AIQoSer: Building the efficient Inference-QoS for AI Services

Jianxin Li, Tianchen Zhu, Haoyi Zhou, Qingyun Sun, Chunyang Jiang, Shuai Zhang, Chunming Hu
{"title":"AIQoSer: Building the efficient Inference-QoS for AI Services","authors":"Jianxin Li, Tianchen Zhu, Haoyi Zhou, Qingyun Sun, Chunyang Jiang, Shuai Zhang, Chunming Hu","doi":"10.1109/IWQoS54832.2022.9812905","DOIUrl":null,"url":null,"abstract":"The AI inspired methods have entirely changed the network QoS landscape and brought better demand-guided experiences for the end-users. However, the increasing demands of satisfactory experiences require larger AI models, whose inference efficiency becomes the non-negligible drawback in the time-sensitive network QoS. In this work, we defined this challenge as the inference-QoS (iQoS) problem of the network QoS itself, which balances inference efficiency and performance for AI services. We design a unified iQoS metric to evaluate the AI-enhanced QoS frameworks with considerations on model performance, inference latency, and input scale. Then, we propose a two-stage pipeline as the exemplar for leveraging the iQoS metric in QoS-aware AI services: (i) enhance reconstruction ability, pretraining masked autoencoder extracts intrinsic data correlations by multi-scale masking; (ii) improve inference efficiency, forecasting masked decoder uses the data scale pruning in terms of spatial and temporal dimension for prediction. Comprehensive experiments on our method demonstrate its superior inference latency and overwhelming traffic matrix prediction performance.","PeriodicalId":353365,"journal":{"name":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 30th International Symposium on Quality of Service (IWQoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWQoS54832.2022.9812905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The AI inspired methods have entirely changed the network QoS landscape and brought better demand-guided experiences for the end-users. However, the increasing demands of satisfactory experiences require larger AI models, whose inference efficiency becomes the non-negligible drawback in the time-sensitive network QoS. In this work, we defined this challenge as the inference-QoS (iQoS) problem of the network QoS itself, which balances inference efficiency and performance for AI services. We design a unified iQoS metric to evaluate the AI-enhanced QoS frameworks with considerations on model performance, inference latency, and input scale. Then, we propose a two-stage pipeline as the exemplar for leveraging the iQoS metric in QoS-aware AI services: (i) enhance reconstruction ability, pretraining masked autoencoder extracts intrinsic data correlations by multi-scale masking; (ii) improve inference efficiency, forecasting masked decoder uses the data scale pruning in terms of spatial and temporal dimension for prediction. Comprehensive experiments on our method demonstrate its superior inference latency and overwhelming traffic matrix prediction performance.
为AI服务构建高效的推理qos
人工智能激发的方法彻底改变了网络QoS格局,为终端用户带来了更好的需求导向体验。然而,越来越多的令人满意的体验需求需要更大的AI模型,其推理效率成为时间敏感网络QoS中不可忽视的缺点。在这项工作中,我们将这一挑战定义为网络QoS本身的推理QoS (iQoS)问题,该问题平衡了AI服务的推理效率和性能。我们设计了一个统一的iQoS度量来评估人工智能增强的QoS框架,同时考虑了模型性能、推理延迟和输入规模。然后,我们提出了一个两阶段的管道作为范例,以在qos感知的AI服务中利用iQoS度量:(i)增强重构能力,预训练掩码自编码器通过多尺度掩码提取内在数据相关性;(ii)提高推理效率,预测掩码解码器根据时空维度对数据尺度进行裁剪进行预测。综合实验表明,该方法具有较好的推理延迟和压倒性流量矩阵预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信