Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy

M. Bangert, Philipp Hennig, U. Oelfke
{"title":"Using an Infinite Von Mises-Fisher Mixture Model to Cluster Treatment Beam Directions in External Radiation Therapy","authors":"M. Bangert, Philipp Hennig, U. Oelfke","doi":"10.1109/ICMLA.2010.114","DOIUrl":null,"url":null,"abstract":"We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

We present a method for fully automated selection of treatment beam ensembles for external radiation therapy. We reformulate the beam angle selection problem as a clustering problem of locally ideal beam orientations distributed on the unit sphere. For this purpose we construct an infinite mixture of von Mises-Fisher distributions, which is suited in general for density estimation from data on the D-dimensional sphere. Using a nonparametric Dirichlet process prior, our model infers probability distributions over both the number of clusters and their parameter values. We describe an efficient Markov chain Monte Carlo inference algorithm for posterior inference from experimental data in this model. The performance of the suggested beam angle selection framework is illustrated for one intra-cranial, pancreas, and prostate case each. The infinite von Mises-Fisher mixture model (iMFMM) creates between 18 and 32 clusters, depending on the patient anatomy. This suggests to use the iMFMM directly for beam ensemble selection in robotic radio surgery, or to generate low-dimensional input for both subsequent optimization of trajectories for arc therapy and beam ensemble selection for conventional radiation therapy.
用无限Von Mises-Fisher混合模型聚类体外放射治疗光束方向
我们提出了一种用于体外放射治疗的完全自动选择治疗束的方法。我们将光束角选择问题重新表述为单位球上局部理想光束方向的聚类问题。为此,我们构造了一个von Mises-Fisher分布的无限混合,它一般适用于从d维球体上的数据进行密度估计。使用非参数狄利克雷过程先验,我们的模型推断出集群数量及其参数值的概率分布。在该模型中,我们描述了一种有效的马尔可夫链蒙特卡罗推理算法,用于从实验数据中进行后验推理。建议的光束角度选择框架的性能说明了一个颅内,胰腺和前列腺的情况下。无限von Mises-Fisher混合模型(iMFMM)根据患者的解剖结构创建了18到32个簇。这表明可以直接使用iMFMM进行机器人放射手术的束系选择,或者为后续的电弧治疗轨迹优化和常规放射治疗的束系选择生成低维输入。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信