Dynamical behaviour of a delay differential equation of Hepatitis B virus

Dayun Wu, Yongmei Su
{"title":"Dynamical behaviour of a delay differential equation of Hepatitis B virus","authors":"Dayun Wu, Yongmei Su","doi":"10.1109/ISB.2014.6990425","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a class of virus dynamics model with intracellular delay and nonlinear infection rate of saturated functional response. The basic reproduction number R0 for the viral infection is derived, and the global dynamics behavior are completely determined by R0. By constructing suitable Lyapunov functional and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable, and when R0 > 1, the infection equilibrium is also globally asymptotically stable.","PeriodicalId":249103,"journal":{"name":"2014 8th International Conference on Systems Biology (ISB)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2014.6990425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate a class of virus dynamics model with intracellular delay and nonlinear infection rate of saturated functional response. The basic reproduction number R0 for the viral infection is derived, and the global dynamics behavior are completely determined by R0. By constructing suitable Lyapunov functional and using LaSalle invariant principle for the delay differential equations, we find when R0 ≤ 1, the infection-free equilibrium is globally asymptotically stable, and when R0 > 1, the infection equilibrium is also globally asymptotically stable.
乙型肝炎病毒时滞微分方程的动力学行为
本文研究了一类具有细胞内延迟和饱和功能反应非线性感染率的病毒动力学模型。导出了病毒感染的基本繁殖数R0,其全局动力学行为完全由R0决定。通过构造合适的Lyapunov泛函,利用LaSalle不变原理对时滞微分方程进行求解,发现当R0≤1时,无感染平衡点是全局渐近稳定的,当R0 > 1时,感染平衡点也是全局渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信