Anomaly detection based on one-class intelligent techniques over a control level plant

Log. J. IGPL Pub Date : 2020-07-24 DOI:10.1093/jigpal/jzz057
Esteban Jove, J. Casteleiro-Roca, Héctor Quintián-Pardo, D. Simić, J. A. M. Pérez, J. Calvo-Rolle
{"title":"Anomaly detection based on one-class intelligent techniques over a control level plant","authors":"Esteban Jove, J. Casteleiro-Roca, Héctor Quintián-Pardo, D. Simić, J. A. M. Pérez, J. Calvo-Rolle","doi":"10.1093/jigpal/jzz057","DOIUrl":null,"url":null,"abstract":"A large part of technological advances, especially in the field of industry, have been focused on the optimization of productive processes. However, the detection of anomalies has turned out to be a great challenge in fields like industry, medicine or stock markets. The present work addresses anomaly detection on a control level plant. We propose the application of different intelligent techniques, which allow to obtain one-class classifiers using real data taken from the correct plant operation. The performance of each classifier is assessed and validated with real created faults, achieving successful overall results.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jigpal/jzz057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

A large part of technological advances, especially in the field of industry, have been focused on the optimization of productive processes. However, the detection of anomalies has turned out to be a great challenge in fields like industry, medicine or stock markets. The present work addresses anomaly detection on a control level plant. We propose the application of different intelligent techniques, which allow to obtain one-class classifiers using real data taken from the correct plant operation. The performance of each classifier is assessed and validated with real created faults, achieving successful overall results.
基于一类智能技术的控制级工厂异常检测
技术进步的很大一部分,特别是在工业领域,集中于生产过程的优化。然而,在工业、医药或股票市场等领域,异常的检测已经成为一个巨大的挑战。本文主要研究控制级工厂的异常检测。我们提出了不同智能技术的应用,这些技术允许使用从正确的工厂操作中获取的真实数据来获得单类分类器。每个分类器的性能都被评估和验证了真实的创建故障,获得了成功的总体结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信