{"title":"A Data-Driven Approach based on Tensor Completion for Replacing “Physical Sensors” with “Virtual Sensors”","authors":"Noorali Raeeji Yanehsari, Hadi Fanaee-T, M. Rahat","doi":"10.1109/DSAA53316.2021.9564118","DOIUrl":null,"url":null,"abstract":"Sensors are being used in many industrial applications for equipment health monitoring and anomaly detection. However, sometimes operation and maintenance of these sensors are costly. Thus companies are interested in reducing the number of required sensors as much as possible. The straightforward solution is to check the prediction power of sensors and eliminate those sensors with limited prediction capabilities. However, this is not an optimal solution because if we discard the identified sensors. As a result, their historical data also will not be utilized anymore. However, typically such historical data can help improve the remaining sensors' signal power, and abolishing them does not seem the right solution. Therefore, we propose the first data-driven approach based on tensor completion for re-utilizing data of removed sensors and the remaining sensors to create virtual sensors. We applied the proposed method on vibration sensors of high-speed separators, operating with five sensors. The producer company was interested in reducing the sensors to two. But with the aid of tensor completion-based virtual sensors, we show that we can safely keep only one sensor and use four virtual sensors that give almost equal detection power when we keep only two physical sensors.","PeriodicalId":129612,"journal":{"name":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA53316.2021.9564118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Sensors are being used in many industrial applications for equipment health monitoring and anomaly detection. However, sometimes operation and maintenance of these sensors are costly. Thus companies are interested in reducing the number of required sensors as much as possible. The straightforward solution is to check the prediction power of sensors and eliminate those sensors with limited prediction capabilities. However, this is not an optimal solution because if we discard the identified sensors. As a result, their historical data also will not be utilized anymore. However, typically such historical data can help improve the remaining sensors' signal power, and abolishing them does not seem the right solution. Therefore, we propose the first data-driven approach based on tensor completion for re-utilizing data of removed sensors and the remaining sensors to create virtual sensors. We applied the proposed method on vibration sensors of high-speed separators, operating with five sensors. The producer company was interested in reducing the sensors to two. But with the aid of tensor completion-based virtual sensors, we show that we can safely keep only one sensor and use four virtual sensors that give almost equal detection power when we keep only two physical sensors.