Malia Morgan, Julianna Schalkwyk, Huaxiaoyue Wang, Hannah Davalos, Ryan Martinez, Vibha Rohilla, James C. Boerkoel
{"title":"Simple Temporal Networks for Improvisational Teamwork","authors":"Malia Morgan, Julianna Schalkwyk, Huaxiaoyue Wang, Hannah Davalos, Ryan Martinez, Vibha Rohilla, James C. Boerkoel","doi":"10.1609/icaps.v32i1.19809","DOIUrl":null,"url":null,"abstract":"When communication between teammates is limited to observations of each other's actions, agents may need to improvise to stay coordinated. Unfortunately, current methods inadequately capture the uncertainty introduced by a lack of direct communication. This paper augments existing frameworks to introduce Simple Temporal Networks for Improvisational Teamwork (STN-IT)—a formulation that captures both the temporal dependencies and uncertainties between agents who need to coordinate but lack reliable communication. We define the notion of strong controllability for STN-ITs, which establishes a static scheduling strategy for controllable agents that produces a consistent team schedule, as long as non-communicative teammates act within known problem constraints. We provide both an exact and approximate approach for finding strongly controllable schedules, empirically demonstrate the trade-offs between these approaches on benchmarks of STN-ITs, and show analytically that the exact method is correct.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When communication between teammates is limited to observations of each other's actions, agents may need to improvise to stay coordinated. Unfortunately, current methods inadequately capture the uncertainty introduced by a lack of direct communication. This paper augments existing frameworks to introduce Simple Temporal Networks for Improvisational Teamwork (STN-IT)—a formulation that captures both the temporal dependencies and uncertainties between agents who need to coordinate but lack reliable communication. We define the notion of strong controllability for STN-ITs, which establishes a static scheduling strategy for controllable agents that produces a consistent team schedule, as long as non-communicative teammates act within known problem constraints. We provide both an exact and approximate approach for finding strongly controllable schedules, empirically demonstrate the trade-offs between these approaches on benchmarks of STN-ITs, and show analytically that the exact method is correct.