Regularization networks for glucose system identification

Z. Trajanoski, P. Wach
{"title":"Regularization networks for glucose system identification","authors":"Z. Trajanoski, P. Wach","doi":"10.1109/IEMBS.1994.415334","DOIUrl":null,"url":null,"abstract":"A framework for non-linear identification of glucose kinetics using neural networks is presented. The framework combines: recursive input-output system representation (Non-linear AutoRegressive model with eXogenous inputs (NARX)); approximation method derived from regularization theory and based on radial basis function neural networks; and validation methods for non-linear systems. System identification was performed using: (1) simulated data from a mathematical model of glucose kinetics in a diabetic state with exogenously infused soluble insulin and monomeric insulin analogues and (2) measured subcutaneous tissue glucose time-series from healthy subjects, respectively.","PeriodicalId":344622,"journal":{"name":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 16th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMBS.1994.415334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A framework for non-linear identification of glucose kinetics using neural networks is presented. The framework combines: recursive input-output system representation (Non-linear AutoRegressive model with eXogenous inputs (NARX)); approximation method derived from regularization theory and based on radial basis function neural networks; and validation methods for non-linear systems. System identification was performed using: (1) simulated data from a mathematical model of glucose kinetics in a diabetic state with exogenously infused soluble insulin and monomeric insulin analogues and (2) measured subcutaneous tissue glucose time-series from healthy subjects, respectively.
葡萄糖系统识别的正则化网络
提出了一种利用神经网络进行葡萄糖动力学非线性识别的框架。该框架结合了:递归输入-输出系统表示(带有外生输入的非线性自回归模型(NARX));基于正则化理论的径向基函数神经网络逼近方法以及非线性系统的验证方法。系统鉴定使用:(1)通过外源性输注可溶性胰岛素和单体胰岛素类似物的糖尿病状态葡萄糖动力学数学模型模拟数据;(2)分别测量健康受试者的皮下组织葡萄糖时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信