Phony News Detection using Machine Learning and Deep-Learning Techniques

Sonal Garg, D. Sharma
{"title":"Phony News Detection using Machine Learning and Deep-Learning Techniques","authors":"Sonal Garg, D. Sharma","doi":"10.1109/SMART50582.2020.9337120","DOIUrl":null,"url":null,"abstract":"The proliferation of misleading news stories on social-media raised a big challenge due to its potential to create an adverse impact on human-being. Existing lexico-syntactic features are unable to detect counterfeit news. Most of the state of art algorithms used small datasets containing a limited number of the training dataset. In this paper, we evaluate our framework on the LIAR dataset by applying machine learning and advanced deep learning techniques. LIAR is a predominant dataset consist of 12,836 short news collected from different sources, including social media. The proposed framework uses POS (part of speech) tagging information and Glove Embedding. The result shows the superiority in terms of accuracy in comparison to the existing state of the art algorithm.","PeriodicalId":129946,"journal":{"name":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Conference System Modeling and Advancement in Research Trends (SMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMART50582.2020.9337120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The proliferation of misleading news stories on social-media raised a big challenge due to its potential to create an adverse impact on human-being. Existing lexico-syntactic features are unable to detect counterfeit news. Most of the state of art algorithms used small datasets containing a limited number of the training dataset. In this paper, we evaluate our framework on the LIAR dataset by applying machine learning and advanced deep learning techniques. LIAR is a predominant dataset consist of 12,836 short news collected from different sources, including social media. The proposed framework uses POS (part of speech) tagging information and Glove Embedding. The result shows the superiority in terms of accuracy in comparison to the existing state of the art algorithm.
利用机器学习和深度学习技术进行虚假新闻检测
社交媒体上误导性新闻的泛滥带来了一个巨大的挑战,因为它可能对人类产生不利影响。现有的词典句法特征无法检测假新闻。大多数最先进的算法使用包含有限数量的训练数据集的小数据集。在本文中,我们通过应用机器学习和先进的深度学习技术在LIAR数据集上评估我们的框架。LIAR是一个主要的数据集,由12836个从不同来源收集的短新闻组成,包括社交媒体。该框架采用词性标注信息和手套嵌入技术。结果表明,与现有算法相比,该算法在精度方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信