Status of the HOLMES experiment to directly measure the electron neutrino mass with a calorimetric approach

G. Gallucci
{"title":"Status of the HOLMES experiment to directly measure the electron neutrino mass with a calorimetric approach","authors":"G. Gallucci","doi":"10.22323/1.369.0106","DOIUrl":null,"url":null,"abstract":"The measurement of neutrino masses is still one of the most compelling issues in modern particle physics. HOLMES is an experiment that aims to measure the effective νe mass using a calorimetric approach. It will measure the spectrum end point of the electron capture (EC) decay of $^{163}$Ho. The very low Q-value (2.8 keV) of the decay and its half life (4570 y) are optimal to reach simultaneously a reasonable activity to have sufficient statistics in the end-point, reducing the pile-up probability and have a small quantity of $^{163}$Ho embedded in the detector not to alter significantly its heat capacity. Holmium will be implanted into a micro calorimeter made by a metallic absorber coupled to transition edge sensor (TES). Each detector will be implanted with around 300 Bq of holmium and the goal of the experiment is implanting ≈500 detectors (8x64 array of detectors) to reach an accuracy of the order of eV. In this contribution, we show the HOLMES experiment with its physics reach and technical challenges, along with its status and perspectives.","PeriodicalId":322602,"journal":{"name":"Proceedings of The 21st international workshop on neutrinos from accelerators — PoS(NuFact2019)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 21st international workshop on neutrinos from accelerators — PoS(NuFact2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.369.0106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The measurement of neutrino masses is still one of the most compelling issues in modern particle physics. HOLMES is an experiment that aims to measure the effective νe mass using a calorimetric approach. It will measure the spectrum end point of the electron capture (EC) decay of $^{163}$Ho. The very low Q-value (2.8 keV) of the decay and its half life (4570 y) are optimal to reach simultaneously a reasonable activity to have sufficient statistics in the end-point, reducing the pile-up probability and have a small quantity of $^{163}$Ho embedded in the detector not to alter significantly its heat capacity. Holmium will be implanted into a micro calorimeter made by a metallic absorber coupled to transition edge sensor (TES). Each detector will be implanted with around 300 Bq of holmium and the goal of the experiment is implanting ≈500 detectors (8x64 array of detectors) to reach an accuracy of the order of eV. In this contribution, we show the HOLMES experiment with its physics reach and technical challenges, along with its status and perspectives.
用量热法直接测量电子中微子质量的HOLMES实验现状
中微子质量的测量仍然是现代粒子物理学中最引人注目的问题之一。HOLMES是一个旨在用量热法测量有效ν质量的实验。它将测量$^{163}$Ho的电子捕获(EC)衰变的光谱终点。极低的衰变q值(2.8 keV)及其半衰期(4570 y)是最理想的,可以同时达到合理的活度,从而在终点具有足够的统计数据,减少堆积概率,并且在探测器中嵌入少量的$^{163}$Ho,而不会显着改变其热容。钬将被植入一个由金属吸收器耦合过渡边缘传感器(TES)制成的微量热计中。每个探测器将植入约300bq的钬,实验目标是植入约500个探测器(8x64探测器阵列),以达到eV数量级的精度。在这篇文章中,我们展示了HOLMES实验的物理范围和技术挑战,以及它的现状和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信