Using hidden Markov models for topic segmentation of meeting transcripts

Melissa Sherman, Yang Liu
{"title":"Using hidden Markov models for topic segmentation of meeting transcripts","authors":"Melissa Sherman, Yang Liu","doi":"10.1109/SLT.2008.4777871","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hidden Markov model (HMM) approach to segment meeting transcripts into topics. To learn the model, we use unsupervised learning to cluster the text segments obtained from topic boundary information. Using modified WinDiff and Pk metrics, we demonstrate that an HMM outperforms LCSeg, a state-of-the-art lexical chain based method for topic segmentation using the ICSI meeting corpus. We evaluate the effect of language model order, the number of hidden states, and the use of stop words. Our experimental results show that a unigram LM is better than a trigram LM, using too many hidden states degrades topic segmentation performance, and that removing the stop words from the transcripts does not improve segmentation performance.","PeriodicalId":186876,"journal":{"name":"2008 IEEE Spoken Language Technology Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Spoken Language Technology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2008.4777871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this paper, we present a hidden Markov model (HMM) approach to segment meeting transcripts into topics. To learn the model, we use unsupervised learning to cluster the text segments obtained from topic boundary information. Using modified WinDiff and Pk metrics, we demonstrate that an HMM outperforms LCSeg, a state-of-the-art lexical chain based method for topic segmentation using the ICSI meeting corpus. We evaluate the effect of language model order, the number of hidden states, and the use of stop words. Our experimental results show that a unigram LM is better than a trigram LM, using too many hidden states degrades topic segmentation performance, and that removing the stop words from the transcripts does not improve segmentation performance.
基于隐马尔可夫模型的会议记录主题分割
在本文中,我们提出了一种隐马尔可夫模型(HMM)方法来将会议记录分割成主题。为了学习该模型,我们使用无监督学习对从主题边界信息中获得的文本片段进行聚类。使用改进的WinDiff和Pk指标,我们证明HMM优于LCSeg, LCSeg是一种使用ICSI会议语料库进行主题分割的最先进的基于词汇链的方法。我们评估了语言模型顺序、隐藏状态的数量和停止词的使用的影响。我们的实验结果表明,单图LM比三图LM更好,使用过多的隐藏状态会降低主题分割性能,并且从文本中删除停止词并不能提高分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信