A generalized kernel for areal and intimate mixtures

Joshua B. Broadwater, A. Banerjee
{"title":"A generalized kernel for areal and intimate mixtures","authors":"Joshua B. Broadwater, A. Banerjee","doi":"10.1109/WHISPERS.2010.5594962","DOIUrl":null,"url":null,"abstract":"In previous work, kernel methods were introduced as a way to generalize the linear mixing model for hyperspectral data. This work led to a new physics-based kernel that allowed accurate unmixing of intimate mixtures. Unfortunately, the new physics-based kernel did not perform well on linear mixtures; thus, different kernels had to be used for different mixtures. Ideally, a single unified kernel that can perform both unmixing of areal and intimate mixtures would be desirable. This paper presents such a kernel that can automatically identify the underlying mixture type from the data and perform the correct unmixing method. Results on real-world, ground-truthed intimate and linear mixtures demonstrate the ability of this new data-driven kernel to perform generalized unmixing of hyperspectral data.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

In previous work, kernel methods were introduced as a way to generalize the linear mixing model for hyperspectral data. This work led to a new physics-based kernel that allowed accurate unmixing of intimate mixtures. Unfortunately, the new physics-based kernel did not perform well on linear mixtures; thus, different kernels had to be used for different mixtures. Ideally, a single unified kernel that can perform both unmixing of areal and intimate mixtures would be desirable. This paper presents such a kernel that can automatically identify the underlying mixture type from the data and perform the correct unmixing method. Results on real-world, ground-truthed intimate and linear mixtures demonstrate the ability of this new data-driven kernel to perform generalized unmixing of hyperspectral data.
面积和亲密混合的广义核
在以往的工作中,引入了核方法作为一种推广高光谱数据线性混合模型的方法。这项工作导致了一种新的基于物理的内核,可以精确地分解亲密混合物。不幸的是,新的基于物理的内核在线性混合上表现不佳;因此,不同的果仁必须用于不同的混合物。理想情况下,需要一个统一的核,它可以执行面混合和亲密混合的分离。本文提出了一种能够从数据中自动识别潜在混合类型并执行正确解混方法的核。在真实的、真实的密切混合和线性混合上的结果表明,这种新的数据驱动核能够对高光谱数据进行广义解混。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信