Temperature Sensitivity Analysis of Double Gate Junctionless Field Effect Transistor with Vertical Gaussian Doping Profile

Balraj Singh, Deepti Gola, Kunal Singh, Ekta Goel, Sanjay Kumar, S. Jit
{"title":"Temperature Sensitivity Analysis of Double Gate Junctionless Field Effect Transistor with Vertical Gaussian Doping Profile","authors":"Balraj Singh, Deepti Gola, Kunal Singh, Ekta Goel, Sanjay Kumar, S. Jit","doi":"10.1109/ICMETE.2016.127","DOIUrl":null,"url":null,"abstract":"This paper investigates the impact of temperature on the DC and AC performance of double gate junctionless field effect transistor (DG-JLFET) with vertical Gaussian doping profile (VGDP) in channel and uniformly doped (UDP) DG-JLFET for the temperature ranging from 200K to 400K using 2D numerical simulation. It is observed that the off state current decreases with temperature for both UDP and GDP DG-JLFET. The off-state current drastically decreases at 200K for VGDP DG-JLFET in comparison to UDP DG-JLFET due to decrease in intrinsic carrier concentration. It is found that the On state current remains almost constant with increase in temperature. Further, The effect of temperature on short channel effects like threshold Voltage roll off, subthreshold swing and Drain induced barrier lowering (DIBL) of VGDP DG-JLFETs is smaller than UDP DGJLFET in the range of 200K to 400K. Moreover, the AC performance metrics like total gate capacitance, transconductance, transconductance generation efficiency, and Cutoff frequency are drastically affected by the temperature below 300K.","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper investigates the impact of temperature on the DC and AC performance of double gate junctionless field effect transistor (DG-JLFET) with vertical Gaussian doping profile (VGDP) in channel and uniformly doped (UDP) DG-JLFET for the temperature ranging from 200K to 400K using 2D numerical simulation. It is observed that the off state current decreases with temperature for both UDP and GDP DG-JLFET. The off-state current drastically decreases at 200K for VGDP DG-JLFET in comparison to UDP DG-JLFET due to decrease in intrinsic carrier concentration. It is found that the On state current remains almost constant with increase in temperature. Further, The effect of temperature on short channel effects like threshold Voltage roll off, subthreshold swing and Drain induced barrier lowering (DIBL) of VGDP DG-JLFETs is smaller than UDP DGJLFET in the range of 200K to 400K. Moreover, the AC performance metrics like total gate capacitance, transconductance, transconductance generation efficiency, and Cutoff frequency are drastically affected by the temperature below 300K.
垂直高斯掺杂双栅无结场效应晶体管的温度敏感性分析
本文利用二维数值模拟研究了温度对通道内垂直高斯掺杂(VGDP)和均匀掺杂(UDP)双栅无结场效应晶体管(DG-JLFET)直流和交流性能的影响,温度范围为200K ~ 400K。可以观察到,UDP和GDP的DG-JLFET的关断状态电流随温度的升高而减小。由于固有载流子浓度的降低,与UDP DG-JLFET相比,VGDP DG-JLFET的失态电流在200K时急剧下降。结果表明,随着温度的升高,导通电流几乎保持恒定。此外,温度对VGDP DGJLFET的阈值电压滚降、亚阈值摆幅和漏极诱导势垒降低(DIBL)等短通道效应的影响在200K至400K范围内小于UDP DGJLFET。此外,总栅极电容、跨导、跨导产生效率和截止频率等交流性能指标受到300K以下温度的极大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信