{"title":"A Least-Loss Algorithm for a Bi-Objective One-Dimensional Cutting-Stock Problem","authors":"Hesham K. Alfares, Omar G. Alsawafy","doi":"10.4018/IJAIE.2019070101","DOIUrl":null,"url":null,"abstract":"This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting larger objects to satisfy orders for smaller items, the remaining parts are considered as useless or wasted material, which is called “trim-loss.” The two objectives of the proposed model, in the order of priority, are to minimize the total trim loss, and the number of partially cut large objects. To produce near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine the combinations of small item sizes that minimize the trim loss quantity. Solving a real-life industrial problem as well as several benchmark problems from the literature, the algorithm demonstrated considerable effectiveness in terms of both objectives, in addition to high computational efficiency.","PeriodicalId":305774,"journal":{"name":"International Journal of Applied Industrial Engineering","volume":"2013 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Industrial Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJAIE.2019070101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
This article presents a new model and an efficient solution algorithm for a bi-objective one-dimensional cutting-stock problem. In the cutting-stock—or trim-loss—problem, customer orders of different smaller item sizes are satisfied by cutting a number of larger standard-size objects. After cutting larger objects to satisfy orders for smaller items, the remaining parts are considered as useless or wasted material, which is called “trim-loss.” The two objectives of the proposed model, in the order of priority, are to minimize the total trim loss, and the number of partially cut large objects. To produce near-optimum solutions, a two-stage least-loss algorithm (LLA) is used to determine the combinations of small item sizes that minimize the trim loss quantity. Solving a real-life industrial problem as well as several benchmark problems from the literature, the algorithm demonstrated considerable effectiveness in terms of both objectives, in addition to high computational efficiency.