Segmentation of multi-sensor images

Rae H. Lee, Richard Leahy
{"title":"Segmentation of multi-sensor images","authors":"Rae H. Lee, Richard Leahy","doi":"10.1109/MDSP.1989.96998","DOIUrl":null,"url":null,"abstract":"Summary form only given. Regions of the images observed by each sensor have been modeled as noncausal Gaussian Markov random fields (GMRFs), and labeled images have been assumed to follow a Gibbs distribution. The region labeling algorithms then become functions of model parameters, and the multisensor image segmentation problems become inference problems, given multisensor parameter measurements and local spatial interaction evidence. Two different multisensor image segmentation algorithms, maximum a posteriori (MAP) estimation and the Dempster-Shafer evidential reasoning technique, have been developed and evaluated. The Bayesian MAP approach uses an independent opinion pool for data fusion and a deterministic relaxation to obtain the map solution. Dempster-Shafer approach uses Dempster's rule of combination for data fusion, belief intervals and ignorance to represent confidence of labeling, and a deterministic relaxation scheme that updates the belief intervals. Simulations with mosaic images of real textures and with anatomical magnetic resonance images have been carried out.<<ETX>>","PeriodicalId":340681,"journal":{"name":"Sixth Multidimensional Signal Processing Workshop,","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth Multidimensional Signal Processing Workshop,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDSP.1989.96998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary form only given. Regions of the images observed by each sensor have been modeled as noncausal Gaussian Markov random fields (GMRFs), and labeled images have been assumed to follow a Gibbs distribution. The region labeling algorithms then become functions of model parameters, and the multisensor image segmentation problems become inference problems, given multisensor parameter measurements and local spatial interaction evidence. Two different multisensor image segmentation algorithms, maximum a posteriori (MAP) estimation and the Dempster-Shafer evidential reasoning technique, have been developed and evaluated. The Bayesian MAP approach uses an independent opinion pool for data fusion and a deterministic relaxation to obtain the map solution. Dempster-Shafer approach uses Dempster's rule of combination for data fusion, belief intervals and ignorance to represent confidence of labeling, and a deterministic relaxation scheme that updates the belief intervals. Simulations with mosaic images of real textures and with anatomical magnetic resonance images have been carried out.<>
多传感器图像分割
只提供摘要形式。每个传感器观察到的图像区域都被建模为非因果高斯马尔可夫随机场(gmrf),并假设标记的图像遵循吉布斯分布。然后,区域标记算法成为模型参数的函数,在给定多传感器参数测量和局部空间相互作用证据的情况下,多传感器图像分割问题成为推理问题。两种不同的多传感器图像分割算法,最大后验(MAP)估计和Dempster-Shafer证据推理技术,已经开发和评估。贝叶斯MAP方法使用独立的意见池进行数据融合,并使用确定性松弛来获得地图解。Dempster- shafer方法采用Dempster的数据融合组合规则,以置信区间和无知表示标注置信度,并采用确定性松弛方案更新置信区间。用真实纹理拼接图像和解剖磁共振图像进行了仿真
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信