SVD-Based Feature Extraction Technique for The Improvement of Effective Connectivity Detection

Abdulhakim Al-Ezzi, N. Kamel, Alaa Al-shargabi, N. Yahya, I. Faye, M. I. Al-Hiyali
{"title":"SVD-Based Feature Extraction Technique for The Improvement of Effective Connectivity Detection","authors":"Abdulhakim Al-Ezzi, N. Kamel, Alaa Al-shargabi, N. Yahya, I. Faye, M. I. Al-Hiyali","doi":"10.1109/ICICyTA53712.2021.9689141","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) plays an essential part in identifying brain function and behaviors for different mental states. Nevertheless, the captured electrical activity is always found to be contaminated with various artifacts that negatively influence the accuracy of EEG analysis. Therefore, it is crucial to build a model to constructively identify and extract clean EEG recordings during the investigation of the dynamical brain networks. To improve the estimation of effective connectivity (EC) and EEG signal denoising, an EEG decomposition method based on the singular value decomposition (SVD) analysis was proposed. The main purpose of the decomposition is to create a method to estimate a signal that represents most of the principal components of the information contained in each brain region before calculating the partial directed coherence (PDC). SVD-based technique and PDC were used to quantify the causal influence of default mode network (DMN) regions on each other and track the changes in brain connectivity. Results of statistical analysis on the effective connectivity using the SVD-PDC algorithm have shown to better reflect the flow of causal information than the independent component analysis (ICA)-PDC. The hybrid algorithm (SVD-PDC) is proposed in this work as an alternative robust adaptive feature extraction method for EEG signals to improve the detection of brain effective connectivity.","PeriodicalId":448148,"journal":{"name":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Intelligent Cybernetics Technology & Applications (ICICyTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICyTA53712.2021.9689141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Electroencephalogram (EEG) plays an essential part in identifying brain function and behaviors for different mental states. Nevertheless, the captured electrical activity is always found to be contaminated with various artifacts that negatively influence the accuracy of EEG analysis. Therefore, it is crucial to build a model to constructively identify and extract clean EEG recordings during the investigation of the dynamical brain networks. To improve the estimation of effective connectivity (EC) and EEG signal denoising, an EEG decomposition method based on the singular value decomposition (SVD) analysis was proposed. The main purpose of the decomposition is to create a method to estimate a signal that represents most of the principal components of the information contained in each brain region before calculating the partial directed coherence (PDC). SVD-based technique and PDC were used to quantify the causal influence of default mode network (DMN) regions on each other and track the changes in brain connectivity. Results of statistical analysis on the effective connectivity using the SVD-PDC algorithm have shown to better reflect the flow of causal information than the independent component analysis (ICA)-PDC. The hybrid algorithm (SVD-PDC) is proposed in this work as an alternative robust adaptive feature extraction method for EEG signals to improve the detection of brain effective connectivity.
改进有效连通性检测的基于奇异值分解的特征提取技术
脑电图在识别不同精神状态下的脑功能和行为方面起着至关重要的作用。然而,捕获的电活动总是被各种各样的伪影污染,这些伪影会对脑电图分析的准确性产生负面影响。因此,在研究动态脑网络的过程中,建立一个有建设性地识别和提取干净脑电记录的模型是至关重要的。为了提高脑电信号的有效连通性估计和去噪能力,提出了一种基于奇异值分解的脑电信号分解方法。分解的主要目的是在计算部分定向相干性(PDC)之前,创建一种方法来估计代表每个大脑区域中包含的信息的大部分主成分的信号。采用基于svd的技术和PDC来量化默认模式网络(DMN)区域相互之间的因果影响,并跟踪脑连通性的变化。对有效连通性的统计分析结果表明,SVD-PDC算法比独立分量分析(ICA)-PDC算法更能反映因果信息的流动。本文提出了一种混合算法(SVD-PDC)作为脑电信号鲁棒自适应特征提取的替代方法,以提高对脑有效连通性的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信