Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter at SemEval-2019 Task 5: Frequency Analysis Interpolation for Hate in Speech Detection
{"title":"Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter at SemEval-2019 Task 5: Frequency Analysis Interpolation for Hate in Speech Detection","authors":"Óscar Garibo i Orts","doi":"10.18653/v1/S19-2081","DOIUrl":null,"url":null,"abstract":"This document describes a text change of representation approach to the task of Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter, as part of SemEval-2019 1 . The task is divided in two sub-tasks. Sub-task A consists in classifying tweets as being hateful or not hateful, whereas sub-task B requires fine tuning the classification by classifying the hateful tweets as being directed to single individuals or generic, if the tweet is aggressive or not. Our approach consists of a change of the space of representation of text into statistical descriptors which characterize the text. In addition, dimensional reduction is performed to 6 characteristics per class in order to make the method suitable for a Big Data environment. Frequency Analysis Interpolation (FAI) is the approach we use to achieve rank 5th in Spanish language and 9th in English language in sub-task B in both cases.","PeriodicalId":109174,"journal":{"name":"Proceedings of the 13th International Workshop on Semantic Evaluation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/S19-2081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This document describes a text change of representation approach to the task of Multilingual Detection of Hate Speech Against Immigrants and Women in Twitter, as part of SemEval-2019 1 . The task is divided in two sub-tasks. Sub-task A consists in classifying tweets as being hateful or not hateful, whereas sub-task B requires fine tuning the classification by classifying the hateful tweets as being directed to single individuals or generic, if the tweet is aggressive or not. Our approach consists of a change of the space of representation of text into statistical descriptors which characterize the text. In addition, dimensional reduction is performed to 6 characteristics per class in order to make the method suitable for a Big Data environment. Frequency Analysis Interpolation (FAI) is the approach we use to achieve rank 5th in Spanish language and 9th in English language in sub-task B in both cases.