Time evolution of perturbed solitons of modified Kadomtsev-Petviashvili equations

S. Phibanchon, M. A. Allen
{"title":"Time evolution of perturbed solitons of modified Kadomtsev-Petviashvili equations","authors":"S. Phibanchon, M. A. Allen","doi":"10.1109/ICCSA.2007.71","DOIUrl":null,"url":null,"abstract":"We solve the (2+1)-dimensional Schamel-Kadomtsev- Petviashvili equations with negative and positive dispersion numerically with one or two perturbed plane solitons as initial conditions. In the negative dispersion case, the plane soliton is stable and retains its identity. For the equation with positive dispersion, the plane solitons decay into two- dimensional lump solitons. We show that in contrast to one- dimensional solitons, collisions between two lump solitons are far from elastic. We also demonstrate that the solitons emerging from the collision can be very sensitive to the alignment of the solitons prior to collision.","PeriodicalId":386960,"journal":{"name":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2007.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We solve the (2+1)-dimensional Schamel-Kadomtsev- Petviashvili equations with negative and positive dispersion numerically with one or two perturbed plane solitons as initial conditions. In the negative dispersion case, the plane soliton is stable and retains its identity. For the equation with positive dispersion, the plane solitons decay into two- dimensional lump solitons. We show that in contrast to one- dimensional solitons, collisions between two lump solitons are far from elastic. We also demonstrate that the solitons emerging from the collision can be very sensitive to the alignment of the solitons prior to collision.
修正Kadomtsev-Petviashvili方程摄动孤子的时间演化
以一个或两个摄动平面孤子为初始条件,数值求解了具有负色散和正色散的(2+1)维Schamel-Kadomtsev- Petviashvili方程。在负色散情况下,平面孤子是稳定的,并保持其同一性。对于正色散方程,平面孤子衰变成二维块状孤子。我们证明了与一维孤子相比,两个块状孤子之间的碰撞远非弹性的。我们还证明了碰撞产生的孤子对碰撞前孤子的排列非常敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信