Estimation of Missing Data Using Convoluted Weighted Method in Nigeria Household Survey

Faweya Olanrewaju, Amahia Godwin Nwanzu, Adeniran Adefemi Tajudeen
{"title":"Estimation of Missing Data Using Convoluted Weighted Method in Nigeria Household Survey","authors":"Faweya Olanrewaju, Amahia Godwin Nwanzu, Adeniran Adefemi Tajudeen","doi":"10.11648/J.SJAMS.20170502.12","DOIUrl":null,"url":null,"abstract":"The analysis of survey data becomes difficult in the presence of missing data. By the use of Least Squares and Stein Rule method, estimator for the parameters of interest can be obtained. In this study, proposed convoluted Weighted Least Squares and Stein Rule method is compared with some existing techniques where the data is considered missing completely at random (MCAR). The results show that other techniques are occasionally useful in estimating most of the parameter, but proposed (LSSR) technique perform better regardless of the percentage of the missing data under MCAR assumption.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20170502.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of survey data becomes difficult in the presence of missing data. By the use of Least Squares and Stein Rule method, estimator for the parameters of interest can be obtained. In this study, proposed convoluted Weighted Least Squares and Stein Rule method is compared with some existing techniques where the data is considered missing completely at random (MCAR). The results show that other techniques are occasionally useful in estimating most of the parameter, but proposed (LSSR) technique perform better regardless of the percentage of the missing data under MCAR assumption.
用卷积加权法估计尼日利亚住户调查中缺失数据
在缺少数据的情况下,调查数据的分析变得困难。利用最小二乘和Stein规则方法,得到了感兴趣参数的估计量。在本研究中,提出的卷积加权最小二乘法和Stein规则方法与一些现有的数据完全随机缺失(MCAR)技术进行了比较。结果表明,其他方法在估计大多数参数时偶尔有用,但在MCAR假设下,无论缺失数据的百分比如何,所提出的(LSSR)方法都表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信