J. Winderickx, An Braeken, Dave Singelée, R. Peeters, T. Vandenryt, R. Thoelen, N. Mentens
{"title":"Digital signatures and signcryption schemes on embedded devices: a trade-off between computation and storage","authors":"J. Winderickx, An Braeken, Dave Singelée, R. Peeters, T. Vandenryt, R. Thoelen, N. Mentens","doi":"10.1145/3203217.3206426","DOIUrl":null,"url":null,"abstract":"This paper targets the efficient implementation of digital signatures and signcryption schemes on typical internet-of-things (IoT) devices, i.e. embedded processors with constrained computation power and storage. Both signcryption schemes (providing digital signatures and encryption simultaneously) and digital signatures rely on computation-intensive public-key cryptography. When the number of signatures or encrypted messages the device needs to generate after deployment is limited, a trade-off can be made between performing the entire computation on the embedded device or moving part of the computation to a precomputation phase. The latter results in the storage of the precomputed values in the memory of the processor. We examine this trade-off on a health sensor platform and we additionally apply storage encryption, resulting in five implementation variants of the considered schemes.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3206426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper targets the efficient implementation of digital signatures and signcryption schemes on typical internet-of-things (IoT) devices, i.e. embedded processors with constrained computation power and storage. Both signcryption schemes (providing digital signatures and encryption simultaneously) and digital signatures rely on computation-intensive public-key cryptography. When the number of signatures or encrypted messages the device needs to generate after deployment is limited, a trade-off can be made between performing the entire computation on the embedded device or moving part of the computation to a precomputation phase. The latter results in the storage of the precomputed values in the memory of the processor. We examine this trade-off on a health sensor platform and we additionally apply storage encryption, resulting in five implementation variants of the considered schemes.