Kriging Methodology for Predicting Material Uncertainty Impact on FEM Scattering Computations

S. Kasdorf, J. Harmon, B. Notaroš
{"title":"Kriging Methodology for Predicting Material Uncertainty Impact on FEM Scattering Computations","authors":"S. Kasdorf, J. Harmon, B. Notaroš","doi":"10.1109/USNC-URSI52151.2023.10238252","DOIUrl":null,"url":null,"abstract":"We present a Kriging interpolation surrogate function for use in reconstruction of probability density function in scattering uncertainty quantification problems, focusing on predicting material uncertainty impact on finite-element scattering computations. The results show extremely high reconstruction accuracy while reducing computation time by approximately two orders of magnitude relative to the conventional Monte Carlo approach. This tool offers a robust option for future uncertainty quantification problems in the field of computational electro magnetics.","PeriodicalId":383636,"journal":{"name":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/USNC-URSI52151.2023.10238252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a Kriging interpolation surrogate function for use in reconstruction of probability density function in scattering uncertainty quantification problems, focusing on predicting material uncertainty impact on finite-element scattering computations. The results show extremely high reconstruction accuracy while reducing computation time by approximately two orders of magnitude relative to the conventional Monte Carlo approach. This tool offers a robust option for future uncertainty quantification problems in the field of computational electro magnetics.
预测材料不确定性对有限元散射计算影响的Kriging方法
提出了一种Kriging插值替代函数,用于散射不确定性量化问题中概率密度函数的重构,重点预测材料不确定性对有限元散射计算的影响。结果表明,与传统的蒙特卡罗方法相比,该方法具有极高的重建精度,同时将计算时间减少了约两个数量级。该工具为未来计算电磁学领域的不确定性量化问题提供了一个强大的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信