Pamela Delgado, Diego Didona, Florin Dinu, W. Zwaenepoel
{"title":"Job-aware Scheduling in Eagle: Divide and Stick to Your Probes","authors":"Pamela Delgado, Diego Didona, Florin Dinu, W. Zwaenepoel","doi":"10.1145/2987550.2987563","DOIUrl":null,"url":null,"abstract":"We present Eagle, a new hybrid data center scheduler for data-parallel programs. Eagle dynamically divides the nodes of the data center in partitions for the execution of long and short jobs, thereby avoiding head-of-line blocking. Furthermore, it provides job awareness and avoids stragglers by a new technique, called Sticky Batch Probing (SBP). The dynamic partitioning of the data center nodes is accomplished by a technique called Succinct State Sharing (SSS), in which the distributed schedulers are informed of the locations where long jobs are executing. SSS is particularly easy to implement with a hybrid scheduler, in which the centralized scheduler places long jobs. With SBP, when a distributed scheduler places a probe for a job on a node, the probe stays there until all tasks of the job have been completed. When finishing the execution of a task corresponding to probe P, rather than executing a task corresponding to the next probe P' in its queue, the node may choose to execute another task corresponding to P. We use SBP in combination with a distributed approximation of Shortest Remaining Processing Time (SRPT) with starvation prevention. We have implemented Eagle as a Spark plugin, and we have measured job completion times for a subset of the Google trace on a 100-node cluster for a variety of cluster loads. We provide simulation results for larger clusters, different traces, and for comparison with other scheduling disciplines. We show that Eagle outperforms other state-of-the-art scheduling solutions at most percentiles, and is more robust against mis-estimation of task duration.","PeriodicalId":362207,"journal":{"name":"Proceedings of the Seventh ACM Symposium on Cloud Computing","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2987550.2987563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90
Abstract
We present Eagle, a new hybrid data center scheduler for data-parallel programs. Eagle dynamically divides the nodes of the data center in partitions for the execution of long and short jobs, thereby avoiding head-of-line blocking. Furthermore, it provides job awareness and avoids stragglers by a new technique, called Sticky Batch Probing (SBP). The dynamic partitioning of the data center nodes is accomplished by a technique called Succinct State Sharing (SSS), in which the distributed schedulers are informed of the locations where long jobs are executing. SSS is particularly easy to implement with a hybrid scheduler, in which the centralized scheduler places long jobs. With SBP, when a distributed scheduler places a probe for a job on a node, the probe stays there until all tasks of the job have been completed. When finishing the execution of a task corresponding to probe P, rather than executing a task corresponding to the next probe P' in its queue, the node may choose to execute another task corresponding to P. We use SBP in combination with a distributed approximation of Shortest Remaining Processing Time (SRPT) with starvation prevention. We have implemented Eagle as a Spark plugin, and we have measured job completion times for a subset of the Google trace on a 100-node cluster for a variety of cluster loads. We provide simulation results for larger clusters, different traces, and for comparison with other scheduling disciplines. We show that Eagle outperforms other state-of-the-art scheduling solutions at most percentiles, and is more robust against mis-estimation of task duration.