Deep Learning Localization with 2D Range Scanner

G. Spampinato, A. Bruna, I. Guarneri, Davide Giacalone
{"title":"Deep Learning Localization with 2D Range Scanner","authors":"G. Spampinato, A. Bruna, I. Guarneri, Davide Giacalone","doi":"10.1109/ICARA51699.2021.9376424","DOIUrl":null,"url":null,"abstract":"In recent years, the use of 2D laser range scanners is increasing in industrial products, thanks to decreasing cost of this kind of devices and increasing accuracy. Nevertheless, the localization estimation of the moving objects (vehicles, robots, drones and so on) between consecutive laser range scans is still a challenging problem. In this paper, we explore different neural network approaches, using only a 2D laser scanner to address this problem. The proposed neural network shows promising results in terms of average accuracy (about 1cm in translation and 1° in rotation of Mean Absolute Error (MAE)) and in terms of overall used parameters (less than one hundred thousand), being an interesting method that could complement or integrate traditional localization approaches. The proposed neural network processes about 8000 pairs of compacted scans per second on Nvidia Titan X (Pascal) GPU.","PeriodicalId":183788,"journal":{"name":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA51699.2021.9376424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In recent years, the use of 2D laser range scanners is increasing in industrial products, thanks to decreasing cost of this kind of devices and increasing accuracy. Nevertheless, the localization estimation of the moving objects (vehicles, robots, drones and so on) between consecutive laser range scans is still a challenging problem. In this paper, we explore different neural network approaches, using only a 2D laser scanner to address this problem. The proposed neural network shows promising results in terms of average accuracy (about 1cm in translation and 1° in rotation of Mean Absolute Error (MAE)) and in terms of overall used parameters (less than one hundred thousand), being an interesting method that could complement or integrate traditional localization approaches. The proposed neural network processes about 8000 pairs of compacted scans per second on Nvidia Titan X (Pascal) GPU.
2D距离扫描仪的深度学习定位
近年来,由于这种设备的成本降低和精度提高,二维激光测距扫描仪在工业产品中的使用越来越多。然而,在连续激光距离扫描之间对运动物体(车辆、机器人、无人机等)的定位估计仍然是一个具有挑战性的问题。在本文中,我们探索了不同的神经网络方法,仅使用二维激光扫描仪来解决这个问题。所提出的神经网络在平均精度(平移约1cm,平均绝对误差(MAE)旋转约1°)和总体使用参数(小于10万个)方面显示出令人满意的结果,是一种可以补充或整合传统定位方法的有趣方法。所提出的神经网络在Nvidia Titan X (Pascal) GPU上每秒处理大约8000对压缩扫描。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信