New Method of Traffic Flow Forecasting Based on QPSO Strategy for Internet of Vehicles

De-gan Zhang, Jing-yu Du, Ting Zhang, Hong-rui Fan
{"title":"New Method of Traffic Flow Forecasting Based on QPSO Strategy for Internet of Vehicles","authors":"De-gan Zhang, Jing-yu Du, Ting Zhang, Hong-rui Fan","doi":"10.1109/SmartIoT49966.2020.00024","DOIUrl":null,"url":null,"abstract":"We propose a new method of traffic flow forecasting based on quantum particle swarm optimization strategy (QPSO) for Internet of Vehicles (IOV). Establish a corresponding model based on the characteristics of the traffic flow data. The genetic simulated annealing method is applied to the quantum particle swarm method to obtain the optimized initial cluster center, and is applied to the parameter optimization of the radial basis neural network prediction model. The function approximation of radial basis neural network can be used to obtain the required data. In addition, in order to compare the performance of the methods, a comparison study with other related methods such as QPSO-RBF is also performed. Our method can reduce prediction errors and get better and more stable prediction results.","PeriodicalId":399187,"journal":{"name":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT49966.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new method of traffic flow forecasting based on quantum particle swarm optimization strategy (QPSO) for Internet of Vehicles (IOV). Establish a corresponding model based on the characteristics of the traffic flow data. The genetic simulated annealing method is applied to the quantum particle swarm method to obtain the optimized initial cluster center, and is applied to the parameter optimization of the radial basis neural network prediction model. The function approximation of radial basis neural network can be used to obtain the required data. In addition, in order to compare the performance of the methods, a comparison study with other related methods such as QPSO-RBF is also performed. Our method can reduce prediction errors and get better and more stable prediction results.
基于QPSO策略的车联网交通流预测新方法
提出了一种基于量子粒子群优化策略(QPSO)的车联网交通流预测方法。根据交通流数据的特点,建立相应的模型。将遗传模拟退火方法应用于量子粒子群方法中获得优化的初始聚类中心,并将其应用于径向基神经网络预测模型的参数优化。利用径向基神经网络的函数逼近可以得到所需的数据。此外,为了比较方法的性能,还与QPSO-RBF等其他相关方法进行了比较研究。该方法可以减少预测误差,得到更好、更稳定的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信