Integration of Region and Edge-based information for Efficient Road Extraction from High Resolution Satellite Imagery

T. T. Mirnalinee, Sukhendu Das, K. Varghese
{"title":"Integration of Region and Edge-based information for Efficient Road Extraction from High Resolution Satellite Imagery","authors":"T. T. Mirnalinee, Sukhendu Das, K. Varghese","doi":"10.1109/ICAPR.2009.42","DOIUrl":null,"url":null,"abstract":"In Remote sensing systems one of the most important features needed are roads, which require automated procedures to rapidly identify them from high-resolution satellite imagery, Many approaches for automatic road extraction have appeared in literature [2][7][9], which vary due to the differences in their goals, available information, algorithms used and assumptions about roads. In this paper, we propose an approach for automatic road extraction by integrating region and edge information. The complimentary information of road segments obtained using Probabilistic SVM(PSVM) and road edges obtained using Dominant Singular Measure (DSM) are integrated using a modified Constraint Satisfaction Neural Network -Complementary Information Integration(CSNN-CII) [1] to improve the accuracy of the system. Results are shown on real-world images and quantitatively evaluated with manual hand-drawn road layouts.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In Remote sensing systems one of the most important features needed are roads, which require automated procedures to rapidly identify them from high-resolution satellite imagery, Many approaches for automatic road extraction have appeared in literature [2][7][9], which vary due to the differences in their goals, available information, algorithms used and assumptions about roads. In this paper, we propose an approach for automatic road extraction by integrating region and edge information. The complimentary information of road segments obtained using Probabilistic SVM(PSVM) and road edges obtained using Dominant Singular Measure (DSM) are integrated using a modified Constraint Satisfaction Neural Network -Complementary Information Integration(CSNN-CII) [1] to improve the accuracy of the system. Results are shown on real-world images and quantitatively evaluated with manual hand-drawn road layouts.
基于区域和边缘信息的高分辨率卫星图像道路提取方法
在遥感系统中,最重要的特征之一是道路,这需要自动程序从高分辨率卫星图像中快速识别它们。文献[2][7][9]中出现了许多自动道路提取方法,这些方法因其目标、可用信息、使用的算法和道路假设的差异而有所不同。本文提出了一种融合区域和边缘信息的道路自动提取方法。利用改进的约束满足神经网络-互补信息集成(CSNN-CII)[1],将概率支持向量机(PSVM)获得的道路段互补信息与优势奇异测度(DSM)获得的道路边缘进行整合,提高系统的准确性。结果显示在真实世界的图像和定量评估与手动手绘道路布局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信