A Feature Point Based Approach for Pose Variant Face Recognition

Madhawa Gunasekara, A. Dharmarathne, D. Sandaruwan
{"title":"A Feature Point Based Approach for Pose Variant Face Recognition","authors":"Madhawa Gunasekara, A. Dharmarathne, D. Sandaruwan","doi":"10.1145/2636240.2636875","DOIUrl":null,"url":null,"abstract":"The Pose variation challenge with respect to missing people database scenario in computerized face recognition is addressed in this study. Moreover, relationships of 2D face images with the angle variations of 0°, 45° and 90° for the same person are obtained. A feature point based approach with geometric distances of the half of face is applied. Moreover, a mathematical model and an Artificial Neural Network model are implemented using curve fitting technique to predict the face images. The face recognition accuracy is mainly tested by using face hit ratio, with Sri Lankan test subjects.","PeriodicalId":360638,"journal":{"name":"International Symposiu on Visual Information Communication and Interaction","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposiu on Visual Information Communication and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2636240.2636875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Pose variation challenge with respect to missing people database scenario in computerized face recognition is addressed in this study. Moreover, relationships of 2D face images with the angle variations of 0°, 45° and 90° for the same person are obtained. A feature point based approach with geometric distances of the half of face is applied. Moreover, a mathematical model and an Artificial Neural Network model are implemented using curve fitting technique to predict the face images. The face recognition accuracy is mainly tested by using face hit ratio, with Sri Lankan test subjects.
基于特征点的姿态变异人脸识别方法
本研究解决了计算机人脸识别中失踪人口数据库场景的姿态变化挑战。此外,还得到了同一个人在角度变化为0°、45°和90°时的二维人脸图像之间的关系。采用了一种基于特征点的半面几何距离方法。此外,利用曲线拟合技术建立了数学模型和人工神经网络模型来预测人脸图像。人脸识别的准确性主要通过人脸命中率进行测试,测试对象为斯里兰卡人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信