Tuning DMC controller using multi-objective optimization for the CIC2018 Benchmark Challenge*

C. Babiera, Juan Manuel Herrero Durá, J. Sanchís, X. Blasco
{"title":"Tuning DMC controller using multi-objective optimization for the CIC2018 Benchmark Challenge*","authors":"C. Babiera, Juan Manuel Herrero Durá, J. Sanchís, X. Blasco","doi":"10.1109/ICOSC.2018.8587817","DOIUrl":null,"url":null,"abstract":"In this paper, a multivariable Dynamic Matrix Control (DMC) tuning using multi-objective optimization (MO) is presented and evaluated on the one-staged refrigeration cycle model described in the CIC2018 benchmark challenge – an adaptation of the benchmark proposed in the PID18 Conference. The MO approach takes advantage of the relative indexes given by the benchmark, allowing knowledge about how much the DMC parameters influence control performance. Results of the MO approach are shown using Level Diagrams (LD), a tool for visualization and analysis of multidimensional Pareto fronts. Consequently, different DMC tunings are selected for different trade-offs between the relative indexes. Selection procedure shows how relevant an analysis of the Pareto Front can be in the decision-making stage for multivariable controller tuning.","PeriodicalId":153985,"journal":{"name":"2018 7th International Conference on Systems and Control (ICSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Systems and Control (ICSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2018.8587817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a multivariable Dynamic Matrix Control (DMC) tuning using multi-objective optimization (MO) is presented and evaluated on the one-staged refrigeration cycle model described in the CIC2018 benchmark challenge – an adaptation of the benchmark proposed in the PID18 Conference. The MO approach takes advantage of the relative indexes given by the benchmark, allowing knowledge about how much the DMC parameters influence control performance. Results of the MO approach are shown using Level Diagrams (LD), a tool for visualization and analysis of multidimensional Pareto fronts. Consequently, different DMC tunings are selected for different trade-offs between the relative indexes. Selection procedure shows how relevant an analysis of the Pareto Front can be in the decision-making stage for multivariable controller tuning.
在CIC2018基准挑战中使用多目标优化对DMC控制器进行调谐*
本文提出了一种使用多目标优化(MO)的多变量动态矩阵控制(DMC)调谐方法,并在CIC2018基准挑战中描述的单阶段制冷循环模型上进行了评估。MO方法利用了基准给出的相关指标,可以了解DMC参数对控制性能的影响程度。MO方法的结果使用层次图(LD)显示,这是一种用于可视化和分析多维帕累托前沿的工具。因此,对于相对指数之间的不同权衡,选择不同的DMC调优。选择过程显示了对Pareto Front的分析在多变量控制器调整的决策阶段的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信