Anisotropic Median Filtering for Stereo Disparity Map Refinement

Nils Einecke, J. Eggert
{"title":"Anisotropic Median Filtering for Stereo Disparity Map Refinement","authors":"Nils Einecke, J. Eggert","doi":"10.5220/0004200401890198","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel method for refining stereo disparity maps that is inspired by both simple median filtering and edge-preserving anisotropic filtering. We argue that a combination of these two techniques is particularly effective for reducing the fattening effect that typically occurs for block-matching stereo algorithms. Experiments show that the newly proposed post-refinement can propel simple patch-based algorithms to much higher ranks in the Middlebury stereo benchmark. Furthermore, a comparison to state-of-the-art methods for disparity refinement shows a similar accuracy improvement but at only a fraction of the computational effort. Hence, this approach can be used in systems with restricted computational power.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004200401890198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper we present a novel method for refining stereo disparity maps that is inspired by both simple median filtering and edge-preserving anisotropic filtering. We argue that a combination of these two techniques is particularly effective for reducing the fattening effect that typically occurs for block-matching stereo algorithms. Experiments show that the newly proposed post-refinement can propel simple patch-based algorithms to much higher ranks in the Middlebury stereo benchmark. Furthermore, a comparison to state-of-the-art methods for disparity refinement shows a similar accuracy improvement but at only a fraction of the computational effort. Hence, this approach can be used in systems with restricted computational power.
用于立体视差贴图细化的各向异性中值滤波
本文提出了一种基于简单中值滤波和保边各向异性滤波的立体视差图精化方法。我们认为,这两种技术的结合对于减少通常发生在块匹配立体算法中的肥胖效应特别有效。实验表明,新提出的后细化可以推动简单的基于补丁的算法在Middlebury立体基准中获得更高的排名。此外,与最先进的视差细化方法的比较显示出类似的精度改进,但仅占计算工作量的一小部分。因此,这种方法可以在计算能力有限的系统中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信