Symmetry breaking differential operators for tensor products of spinorial representations.

J. Clerc, K. Koufany
{"title":"Symmetry breaking differential operators for tensor products of spinorial representations.","authors":"J. Clerc, K. Koufany","doi":"10.3842/SIGMA.2021.049","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb S$ be a Clifford module for the complexified Clifford algebra $C\\ell(\\mathbb R^n)$, $\\mathbb S'$ its dual, $\\rho$ and $\\rho'$ be the corresponding representations of the spin group $Spin(\\mathbb R^n)$. The group $G=Spin(\\mathbb R^{1,n+1})$ is the (twofold covering) of the conformal group of $\\mathbb R^n$. For $\\lambda, \\mu\\in \\mathbb C$, let $\\pi_{\\rho, \\lambda}$ (resp. $\\pi_{\\rho',\\mu}$) be the spinorial representation of $G$ on $ \\mathbb S$-valued $\\lambda$-densities (resp. $\\mathbb S'$-valued $\\mu$-densities) on $\\mathbb R^n$. For $0\\leq k\\leq n$ and $m\\in \\mathbb N$, we construct a symmetry breaking differential operator $B_{k;\\lambda,\\mu}^{(m)}$ from $C^\\infty(\\mathbb R^n \\times \\mathbb R^n, \\mathbb S\\otimes \\mathbb S')$ into $C^\\infty(\\mathbb R^n, \\Lambda^*_k(\\mathbb R^n))$ which intertwines the representations $\\pi_{\\rho, \\lambda}\\otimes \\pi_{\\rho',\\mu} $ and $\\pi_{\\tau^*_k,\\lambda+\\mu+2m}$, where $\\tau^*_k$ is the representation of $Spin(\\mathbb R^n)$ on $\\Lambda^*_k(\\mathbb R^n)$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $C\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group $Spin(\mathbb R^n)$. The group $G=Spin(\mathbb R^{1,n+1})$ is the (twofold covering) of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ on $ \mathbb S$-valued $\lambda$-densities (resp. $\mathbb S'$-valued $\mu$-densities) on $\mathbb R^n$. For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n, \mathbb S\otimes \mathbb S')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n))$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of $Spin(\mathbb R^n)$ on $\Lambda^*_k(\mathbb R^n)$.
旋量表示张量积的对称破缺微分算子。
让 $\mathbb S$ 是复数Clifford代数的Clifford模 $C\ell(\mathbb R^n)$, $\mathbb S'$ 它是双重的, $\rho$ 和 $\rho'$ 是自旋群的对应表示 $Spin(\mathbb R^n)$. 小组 $G=Spin(\mathbb R^{1,n+1})$ 共形群的(双重覆盖)是 $\mathbb R^n$. 因为 $\lambda, \mu\in \mathbb C$,让 $\pi_{\rho, \lambda}$ (回答) $\pi_{\rho',\mu}$是…的脊椎表征 $G$ on $ \mathbb S$有价值的 $\lambda$-密度(相对) $\mathbb S'$有价值的 $\mu$-密度) $\mathbb R^n$. 因为 $0\leq k\leq n$ 和 $m\in \mathbb N$,构造一个对称破缺微分算子 $B_{k;\lambda,\mu}^{(m)}$ 从 $C^\infty(\mathbb R^n \times \mathbb R^n, \mathbb S\otimes \mathbb S')$ 进入 $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n))$ 是什么把表象纠缠在一起 $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ 和 $\pi_{\tau^*_k,\lambda+\mu+2m}$,其中 $\tau^*_k$ 是对 $Spin(\mathbb R^n)$ on $\Lambda^*_k(\mathbb R^n)$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信