{"title":"Symmetry breaking differential operators for tensor products of spinorial representations.","authors":"J. Clerc, K. Koufany","doi":"10.3842/SIGMA.2021.049","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb S$ be a Clifford module for the complexified Clifford algebra $C\\ell(\\mathbb R^n)$, $\\mathbb S'$ its dual, $\\rho$ and $\\rho'$ be the corresponding representations of the spin group $Spin(\\mathbb R^n)$. The group $G=Spin(\\mathbb R^{1,n+1})$ is the (twofold covering) of the conformal group of $\\mathbb R^n$. For $\\lambda, \\mu\\in \\mathbb C$, let $\\pi_{\\rho, \\lambda}$ (resp. $\\pi_{\\rho',\\mu}$) be the spinorial representation of $G$ on $ \\mathbb S$-valued $\\lambda$-densities (resp. $\\mathbb S'$-valued $\\mu$-densities) on $\\mathbb R^n$. For $0\\leq k\\leq n$ and $m\\in \\mathbb N$, we construct a symmetry breaking differential operator $B_{k;\\lambda,\\mu}^{(m)}$ from $C^\\infty(\\mathbb R^n \\times \\mathbb R^n, \\mathbb S\\otimes \\mathbb S')$ into $C^\\infty(\\mathbb R^n, \\Lambda^*_k(\\mathbb R^n))$ which intertwines the representations $\\pi_{\\rho, \\lambda}\\otimes \\pi_{\\rho',\\mu} $ and $\\pi_{\\tau^*_k,\\lambda+\\mu+2m}$, where $\\tau^*_k$ is the representation of $Spin(\\mathbb R^n)$ on $\\Lambda^*_k(\\mathbb R^n)$.","PeriodicalId":275006,"journal":{"name":"arXiv: Representation Theory","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let $\mathbb S$ be a Clifford module for the complexified Clifford algebra $C\ell(\mathbb R^n)$, $\mathbb S'$ its dual, $\rho$ and $\rho'$ be the corresponding representations of the spin group $Spin(\mathbb R^n)$. The group $G=Spin(\mathbb R^{1,n+1})$ is the (twofold covering) of the conformal group of $\mathbb R^n$. For $\lambda, \mu\in \mathbb C$, let $\pi_{\rho, \lambda}$ (resp. $\pi_{\rho',\mu}$) be the spinorial representation of $G$ on $ \mathbb S$-valued $\lambda$-densities (resp. $\mathbb S'$-valued $\mu$-densities) on $\mathbb R^n$. For $0\leq k\leq n$ and $m\in \mathbb N$, we construct a symmetry breaking differential operator $B_{k;\lambda,\mu}^{(m)}$ from $C^\infty(\mathbb R^n \times \mathbb R^n, \mathbb S\otimes \mathbb S')$ into $C^\infty(\mathbb R^n, \Lambda^*_k(\mathbb R^n))$ which intertwines the representations $\pi_{\rho, \lambda}\otimes \pi_{\rho',\mu} $ and $\pi_{\tau^*_k,\lambda+\mu+2m}$, where $\tau^*_k$ is the representation of $Spin(\mathbb R^n)$ on $\Lambda^*_k(\mathbb R^n)$.