Detection of epileptics during seizure free periods

Mohamed ElAmine Hadj-Youcef, M. Adnane, A. Bousbia-Salah
{"title":"Detection of epileptics during seizure free periods","authors":"Mohamed ElAmine Hadj-Youcef, M. Adnane, A. Bousbia-Salah","doi":"10.1109/WOSSPA.2013.6602363","DOIUrl":null,"url":null,"abstract":"In this paper the problematic of epileptic detection is treated. An algorithm of EEG signal classification into two classes: Healthy and Epileptics is developed. The difference with conventional methods is the use of free seizure epileptic records. A good classification accuracy means that it is possible to detect an epileptic in normal state or at an early stage of epilepsy. The raw EEG signal is decomposed using discrete wavelet transform (DWT). Then, principal component analysis (PCA) allows dimensionality reduction and better representation of the data. Several features are extracted and used in support vector machine (SVM) classifier. Results show satisfactory classification accuracy comparable or better than those reported in literature.","PeriodicalId":417940,"journal":{"name":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOSSPA.2013.6602363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper the problematic of epileptic detection is treated. An algorithm of EEG signal classification into two classes: Healthy and Epileptics is developed. The difference with conventional methods is the use of free seizure epileptic records. A good classification accuracy means that it is possible to detect an epileptic in normal state or at an early stage of epilepsy. The raw EEG signal is decomposed using discrete wavelet transform (DWT). Then, principal component analysis (PCA) allows dimensionality reduction and better representation of the data. Several features are extracted and used in support vector machine (SVM) classifier. Results show satisfactory classification accuracy comparable or better than those reported in literature.
无发作期癫痫患者的检测
本文讨论了癫痫的检测问题。提出了一种将脑电信号分为健康和癫痫两类的算法。与传统方法的不同之处在于使用免费的癫痫发作记录。良好的分类准确性意味着可以在正常状态或癫痫早期阶段检测到癫痫患者。对原始脑电信号进行离散小波变换(DWT)分解。然后,主成分分析(PCA)允许降维并更好地表示数据。提取若干特征并用于支持向量机(SVM)分类器。结果表明,分类精度与文献报道相当或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信