Distributed min-max optimization in networks

Kunal Srivastava, A. Nedić, D. Stipanović
{"title":"Distributed min-max optimization in networks","authors":"Kunal Srivastava, A. Nedić, D. Stipanović","doi":"10.1109/ICDSP.2011.6004889","DOIUrl":null,"url":null,"abstract":"We consider a setup where we are given a network of agents with their local objective functions which are coupled through a common decision variable. We provide a distributed stochastic gradient algorithm for the agents to compute an optimal decision variable that minimizes the worst case loss incurred by any agent. We establish almost sure convergence of the agent's estimates to a common optimal point. We demonstrate the use of our algorithm to a problem of min-max fair power allocation in a cellular network.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We consider a setup where we are given a network of agents with their local objective functions which are coupled through a common decision variable. We provide a distributed stochastic gradient algorithm for the agents to compute an optimal decision variable that minimizes the worst case loss incurred by any agent. We establish almost sure convergence of the agent's estimates to a common optimal point. We demonstrate the use of our algorithm to a problem of min-max fair power allocation in a cellular network.
网络中的分布式最小-最大优化
我们考虑一种设置,其中我们给定一个代理网络,其局部目标函数通过一个共同的决策变量耦合。我们为智能体提供了一种分布式随机梯度算法来计算一个最优决策变量,使任何智能体产生的最坏情况损失最小化。我们建立了智能体的估计几乎肯定收敛到一个共同的最优点。我们演示了在蜂窝网络中使用我们的算法来解决最小-最大公平功率分配问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信