Smart Sentiment Analyzer for Bengali-English based on Hybrid Model

S. Noor, Abu Shafin Mohammad Mahdee Jameel, M. N. Huda
{"title":"Smart Sentiment Analyzer for Bengali-English based on Hybrid Model","authors":"S. Noor, Abu Shafin Mohammad Mahdee Jameel, M. N. Huda","doi":"10.1109/ICECTE48615.2019.9303512","DOIUrl":null,"url":null,"abstract":"This paper describes an intelligent sentiment analyzer incorporating linguistic knowledge. Our proposed method comprises three stages i) corpus construction, ii) classification using machine learning tools, and iii) linguistic knowledge integration in post processing stage if any misclassification occurs due to minor problem. Here, we applied nine supervised and ensemble learning approaches. From the experiments it is observed that the naïve Bayesian classifier with linguistic knowledge provides better accuracy (93%) on an average over the other classifiers using the 4-fold cross validation. Positive or negative or confused emotions with corresponding emoticons for both English and Bengali languages are determined and the results are demonstrated via an easy to use web based interface.","PeriodicalId":320507,"journal":{"name":"2019 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","volume":"58 Suppl A 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECTE48615.2019.9303512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper describes an intelligent sentiment analyzer incorporating linguistic knowledge. Our proposed method comprises three stages i) corpus construction, ii) classification using machine learning tools, and iii) linguistic knowledge integration in post processing stage if any misclassification occurs due to minor problem. Here, we applied nine supervised and ensemble learning approaches. From the experiments it is observed that the naïve Bayesian classifier with linguistic knowledge provides better accuracy (93%) on an average over the other classifiers using the 4-fold cross validation. Positive or negative or confused emotions with corresponding emoticons for both English and Bengali languages are determined and the results are demonstrated via an easy to use web based interface.
基于混合模型的智能孟加拉语-英语情感分析
本文描述了一种结合语言知识的智能情感分析器。我们提出的方法包括三个阶段:i)语料库构建;ii)使用机器学习工具进行分类;iii)如果由于小问题而出现误分类,则在后处理阶段进行语言知识整合。在这里,我们应用了九种监督学习和集成学习方法。从实验中可以观察到,具有语言知识的naïve贝叶斯分类器比使用4倍交叉验证的其他分类器平均提供更好的准确性(93%)。用相应的英语和孟加拉语表情符号确定积极或消极或困惑的情绪,并通过一个易于使用的基于web的界面展示结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信