On Paired Domination of Some Graphs

Rakhimol V. Isaac, Parashree Pandya
{"title":"On Paired Domination of Some Graphs","authors":"Rakhimol V. Isaac, Parashree Pandya","doi":"10.26524/cm153","DOIUrl":null,"url":null,"abstract":"\n \n \nFor a graph a subset D of the vertex set is called a dominating set if every vertex in is adjacent to some vertex in D. The domination number is the minimum cardinality of a dominating set of a graph G. The paired dominating set of a graph is a dominating set and the subgraph induced by it contains a perfect matching. The paired domination number is the minimum cardinality of a paired dominating set in G. In this paper, we discuss the paired domination number of the graphs obtained by the kth power of path and cycle and degree splitting graphs of some standard graphs. \n \n \n","PeriodicalId":414198,"journal":{"name":"Journal of Computational Mathematica","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26524/cm153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph a subset D of the vertex set is called a dominating set if every vertex in is adjacent to some vertex in D. The domination number is the minimum cardinality of a dominating set of a graph G. The paired dominating set of a graph is a dominating set and the subgraph induced by it contains a perfect matching. The paired domination number is the minimum cardinality of a paired dominating set in G. In this paper, we discuss the paired domination number of the graphs obtained by the kth power of path and cycle and degree splitting graphs of some standard graphs.
关于某些图的成对支配
对于一个图,如果顶点集D中的每个顶点与D中的某个顶点相邻,则该顶点集的子集D称为支配集,支配数是图g的支配集的最小基数,图的成对支配集是一个支配集,它所诱导的子图包含一个完美匹配。配对支配数是g中配对支配集的最小基数。本文讨论了若干标准图的路径、循环和度分割图的k次幂所得到的图的配对支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信