Resource-Efficient Transmission of Vehicular Sensor Data Using Context-Aware Communication

Benjamin Sliwa, T. Liebig, Robert Falkenberg, Johannes Pillmann, C. Wietfeld
{"title":"Resource-Efficient Transmission of Vehicular Sensor Data Using Context-Aware Communication","authors":"Benjamin Sliwa, T. Liebig, Robert Falkenberg, Johannes Pillmann, C. Wietfeld","doi":"10.1109/MDM.2018.00051","DOIUrl":null,"url":null,"abstract":"Upcoming Intelligent Traffic Control Systems (ITSCs) will base their optimization processes on crowdsensing data obtained for cars that are used as mobile sensor nodes. In conclusion, public cellular networks will be confronted with massive increases in Machine-Type Communication (MTC) and will require efficient communication schemes to minimize the interference of Internet of Things (IoT) data traffic with human communication. In this demonstration, we present an Open Source framework for context-aware transmission of vehicular sensor data that exploits knowledge about the characteristics of the transmission channel for leveraging connectivity hotspots, where data transmissions can be performed with a high grade if resource efficiency. At the conference, we will present the measurement application for acquisition and live-visualization of the required network quality indicators and show how the transmission scheme performs in real-world vehicular scenarios based on measurement data obtained from field experiments.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Upcoming Intelligent Traffic Control Systems (ITSCs) will base their optimization processes on crowdsensing data obtained for cars that are used as mobile sensor nodes. In conclusion, public cellular networks will be confronted with massive increases in Machine-Type Communication (MTC) and will require efficient communication schemes to minimize the interference of Internet of Things (IoT) data traffic with human communication. In this demonstration, we present an Open Source framework for context-aware transmission of vehicular sensor data that exploits knowledge about the characteristics of the transmission channel for leveraging connectivity hotspots, where data transmissions can be performed with a high grade if resource efficiency. At the conference, we will present the measurement application for acquisition and live-visualization of the required network quality indicators and show how the transmission scheme performs in real-world vehicular scenarios based on measurement data obtained from field experiments.
使用上下文感知通信的车辆传感器数据资源高效传输
即将推出的智能交通控制系统(itsc)将基于从用作移动传感器节点的汽车中获得的群体传感数据来优化过程。总之,公共蜂窝网络将面临机器类型通信(MTC)的大量增长,并将需要有效的通信方案,以最大限度地减少物联网(IoT)数据流量对人类通信的干扰。在本演示中,我们提出了一个用于车辆传感器数据上下文感知传输的开源框架,该框架利用有关传输通道特性的知识来利用连接热点,在这些热点中,数据传输可以以高质量的资源效率执行。在会议上,我们将展示用于采集和实时可视化所需网络质量指标的测量应用程序,并展示基于现场实验获得的测量数据的传输方案如何在实际车辆场景中执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信