Neuro-fuzzy identification models

D. Matko, R. Karba, B. Zupancic
{"title":"Neuro-fuzzy identification models","authors":"D. Matko, R. Karba, B. Zupancic","doi":"10.1109/ICIT.2000.854245","DOIUrl":null,"url":null,"abstract":"The paper deals with the neural net and fuzzy models as universal approximators. Four types of models suitable for identification are presented: the nonlinear output error, the nonlinear input error, the nonlinear generalised output error and the nonlinear generalised input error model. The convergence properties of all four models in the presence of disturbing noise are reviewed and it is shown that the condition for an unbiased identification is that the disturbing noise is white and that it enters the nonlinear model in specific point depending on the type of the model.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper deals with the neural net and fuzzy models as universal approximators. Four types of models suitable for identification are presented: the nonlinear output error, the nonlinear input error, the nonlinear generalised output error and the nonlinear generalised input error model. The convergence properties of all four models in the presence of disturbing noise are reviewed and it is shown that the condition for an unbiased identification is that the disturbing noise is white and that it enters the nonlinear model in specific point depending on the type of the model.
神经模糊识别模型
本文讨论了神经网络和模糊模型作为通用逼近器。提出了适用于辨识的四种模型:非线性输出误差、非线性输入误差、非线性广义输出误差和非线性广义输入误差模型。讨论了四种模型在干扰噪声存在下的收敛性,证明了干扰噪声为白色且根据模型的类型在特定点进入非线性模型是无偏辨识的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信