Clusterization and Predictive Model Construction

Y. Kistenev, A. Borisov, D. Vrazhnov
{"title":"Clusterization and Predictive Model Construction","authors":"Y. Kistenev, A. Borisov, D. Vrazhnov","doi":"10.1117/3.2599935.CH4","DOIUrl":null,"url":null,"abstract":"The most crucial step in the machine learning pipeline is related to experimental data content and semantic analysis to predict new data’s meaning. The methods and algorithms of supervised and supervised learning are presented in this chapter. The Python codes for the most useful analytical methods described in the chapter are presented in the Supplemental Materials.","PeriodicalId":285501,"journal":{"name":"Medical Applications of Laser Molecular Imaging and Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Applications of Laser Molecular Imaging and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/3.2599935.CH4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The most crucial step in the machine learning pipeline is related to experimental data content and semantic analysis to predict new data’s meaning. The methods and algorithms of supervised and supervised learning are presented in this chapter. The Python codes for the most useful analytical methods described in the chapter are presented in the Supplemental Materials.
聚类与预测模型构建
机器学习管道中最关键的一步与实验数据内容和语义分析有关,以预测新数据的含义。本章介绍了监督学习和监督学习的方法和算法。本章中描述的最有用的分析方法的Python代码在补充材料中提供。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信