{"title":"Optimal energy dispatch based on zero bus load flow in microgrid having multiple sources using Fuzzy-Particle Swarm Optimization approach","authors":"Hemanth Chaduvula, D. Das","doi":"10.1109/TPEC51183.2021.9384931","DOIUrl":null,"url":null,"abstract":"The optimal economic-emission dispatch is acquired through optimal energy management of sources in the microgrid. The dispatch from distributed energy resources (DERs) and power exchange with the grid are managed for achieving the optimal operation in the microgrid. The optimal scheduling of microgrid varies according to its mode of connection to the grid. In this paper, the concept of zero bus load flow (ZBLF) is performed in a microgrid by known power injection from the grid. The particle swarm optimization (PSO) technique is employed for attaining the optimum output values of sources with distinct characteristics. In this work, the PSO embedded Fuzzy multi-objective approach is implemented for optimal energy management in the microgrid. The objectives such as operation cost, emission, and cost of energy loss are considered in a 24-hour time horizon. The degree of satisfaction of each objective is attained by representing in the fuzzy domain due to its imprecise nature. The results of Fuzzy-PSO method are validated with nondominated sorting genetic algorithm II (NSGA-II). The proposed technique has been applied to a 33-bus grid connected microgrid system.","PeriodicalId":354018,"journal":{"name":"2021 IEEE Texas Power and Energy Conference (TPEC)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC51183.2021.9384931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The optimal economic-emission dispatch is acquired through optimal energy management of sources in the microgrid. The dispatch from distributed energy resources (DERs) and power exchange with the grid are managed for achieving the optimal operation in the microgrid. The optimal scheduling of microgrid varies according to its mode of connection to the grid. In this paper, the concept of zero bus load flow (ZBLF) is performed in a microgrid by known power injection from the grid. The particle swarm optimization (PSO) technique is employed for attaining the optimum output values of sources with distinct characteristics. In this work, the PSO embedded Fuzzy multi-objective approach is implemented for optimal energy management in the microgrid. The objectives such as operation cost, emission, and cost of energy loss are considered in a 24-hour time horizon. The degree of satisfaction of each objective is attained by representing in the fuzzy domain due to its imprecise nature. The results of Fuzzy-PSO method are validated with nondominated sorting genetic algorithm II (NSGA-II). The proposed technique has been applied to a 33-bus grid connected microgrid system.