Abnormal Traffic Detection Using Intelligent Driver Model

Waqas Sultani, J. Choi
{"title":"Abnormal Traffic Detection Using Intelligent Driver Model","authors":"Waqas Sultani, J. Choi","doi":"10.1109/ICPR.2010.88","DOIUrl":null,"url":null,"abstract":"We present a novel approach for detecting and localizing abnormal traffic using intelligent driver model. Specifically, we advect particles over video sequence. By treating each particle as a car, we compute driver behavior using intelligent driver model. The behaviors are learned using latent dirichlet allocation and frames are classified as abnormal using likelihood threshold criteria. In order to localize the abnormality; we compute spatial gradients of behaviors and construct Finite Time Lyaponov Field. Finally the region of abnormality is segmented using watershed algorithm. The effectiveness of proposed approach is validated using videos from stock footage websites.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We present a novel approach for detecting and localizing abnormal traffic using intelligent driver model. Specifically, we advect particles over video sequence. By treating each particle as a car, we compute driver behavior using intelligent driver model. The behaviors are learned using latent dirichlet allocation and frames are classified as abnormal using likelihood threshold criteria. In order to localize the abnormality; we compute spatial gradients of behaviors and construct Finite Time Lyaponov Field. Finally the region of abnormality is segmented using watershed algorithm. The effectiveness of proposed approach is validated using videos from stock footage websites.
基于智能驾驶员模型的异常交通检测
提出了一种利用智能驾驶员模型检测和定位异常交通的新方法。具体来说,我们在视频序列上平流粒子。通过将每个粒子视为一辆汽车,我们使用智能驾驶员模型计算驾驶员行为。使用潜狄利克雷分配学习行为,并使用似然阈值准则将帧分类为异常。以定位异常;我们计算了行为的空间梯度,构造了有限时间Lyaponov场。最后利用分水岭算法对异常区域进行分割。利用库存素材网站的视频验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信