Improving Neural Machine Translation for Low-resource English-Myanmar-Thai Language Pairs with SwitchOut Data Augmentation Algorithm

Mya Ei San, Ye Kyaw Thu, T. Supnithi, Sasiporn Usanavasin
{"title":"Improving Neural Machine Translation for Low-resource English-Myanmar-Thai Language Pairs with SwitchOut Data Augmentation Algorithm","authors":"Mya Ei San, Ye Kyaw Thu, T. Supnithi, Sasiporn Usanavasin","doi":"10.1109/iSAI-NLP56921.2022.9960261","DOIUrl":null,"url":null,"abstract":"To improve the data resource of low-resource English- Myanmar- Thai language pairs, we build the first parallel medical corpus, named as En-My- Th medical corpus which is composed of total 14,592 parallel sentences. In our paper, we make experiments on the English-Myanmar language pair of new En-My-Th medical corpus and in addition, English-Thai and Thai-Myanmar language pairs from the existing ASEAN- MT corpus. The experiments of SwitchOut data augmentation algorithm and the baseline attention-based sequence to sequence model are trained on the aforementioned language pairs in both directions. Experimental results show that combination of Switch Out algorithm with the baseline model outperforms the baseline only model in the translation of most language pairs for both corpora. Furthermore, we investigate the performance of the baseline model and baseline+SwitchOut model by adding or removing word dropout at the recurrent layers, at which baseline+SwitchOut model with the dropout increases around (+1.0) BLEU4 and GLEU scores in some of language nairs.","PeriodicalId":399019,"journal":{"name":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iSAI-NLP56921.2022.9960261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To improve the data resource of low-resource English- Myanmar- Thai language pairs, we build the first parallel medical corpus, named as En-My- Th medical corpus which is composed of total 14,592 parallel sentences. In our paper, we make experiments on the English-Myanmar language pair of new En-My-Th medical corpus and in addition, English-Thai and Thai-Myanmar language pairs from the existing ASEAN- MT corpus. The experiments of SwitchOut data augmentation algorithm and the baseline attention-based sequence to sequence model are trained on the aforementioned language pairs in both directions. Experimental results show that combination of Switch Out algorithm with the baseline model outperforms the baseline only model in the translation of most language pairs for both corpora. Furthermore, we investigate the performance of the baseline model and baseline+SwitchOut model by adding or removing word dropout at the recurrent layers, at which baseline+SwitchOut model with the dropout increases around (+1.0) BLEU4 and GLEU scores in some of language nairs.
基于SwitchOut数据增强算法的低资源英缅泰语对神经机器翻译
为了完善低资源的英缅泰语对数据资源,我们构建了首个平行医学语料库En-My- Th,共包含14592个平行句。在本文中,我们对新En-My-Th医学语料库中的英缅语对以及现有ASEAN- MT语料库中的英泰语对和泰缅语对进行了实验。SwitchOut数据增强算法和基于基线注意力的序列到序列模型实验在上述语言对上进行了两个方向的训练。实验结果表明,在两种语料库的大多数语言对翻译中,Switch Out算法与基线模型相结合的翻译效果优于仅基线模型。此外,我们通过在循环层添加或删除单词dropout来研究基线模型和基线+SwitchOut模型的性能,在一些语言问题中,基线+SwitchOut模型的dropout增加了大约(+1.0)BLEU4和GLEU分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信