Energy Efficient LPWAN Decoding via Joint Sparse Approximation

Jun Liu, Weitao Xu, Wen Hu
{"title":"Energy Efficient LPWAN Decoding via Joint Sparse Approximation","authors":"Jun Liu, Weitao Xu, Wen Hu","doi":"10.1145/3274783.3275165","DOIUrl":null,"url":null,"abstract":"We propose a sparse approximation based joint-decoding system for LPWAN (LoRa) PHY-layer frame decoding. Recent research has shown that joint-decoding raw radio ADC samples in the Cloud offloaded from LPWAN gateways can decode weak radio signals by combining coherent frames. However, this approach requires high network bandwidth usage to collect a large amount of ADC samples from each gateway, which results in network congestion and high financial cost due to Internet data usage between the gateway and the Cloud server. In order to reduce the bandwidth usage of this data offloading operation, we propose a LPWAN packet acquisition mechanism based on joint sparse approximation.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3275165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a sparse approximation based joint-decoding system for LPWAN (LoRa) PHY-layer frame decoding. Recent research has shown that joint-decoding raw radio ADC samples in the Cloud offloaded from LPWAN gateways can decode weak radio signals by combining coherent frames. However, this approach requires high network bandwidth usage to collect a large amount of ADC samples from each gateway, which results in network congestion and high financial cost due to Internet data usage between the gateway and the Cloud server. In order to reduce the bandwidth usage of this data offloading operation, we propose a LPWAN packet acquisition mechanism based on joint sparse approximation.
基于联合稀疏逼近的高效LPWAN解码
提出了一种基于稀疏近似的LPWAN (LoRa)物理层帧解码联合解码系统。最近的研究表明,从LPWAN网关卸载的云中的联合解码原始无线电ADC样本可以通过合并相干帧来解码弱无线电信号。然而,这种方法需要使用很高的网络带宽来从每个网关收集大量的ADC样本,这会导致网络拥塞,并且由于网关和云服务器之间的互联网数据使用而导致高昂的财务成本。为了减少这种数据卸载操作的带宽占用,我们提出了一种基于联合稀疏逼近的LPWAN数据包获取机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信