An Optimization Method for Parameters of SVM in Network Intrusion Detection System

Qiuwei Yang, Hongjuan Fu, Ting Zhu
{"title":"An Optimization Method for Parameters of SVM in Network Intrusion Detection System","authors":"Qiuwei Yang, Hongjuan Fu, Ting Zhu","doi":"10.1109/DCOSS.2016.48","DOIUrl":null,"url":null,"abstract":"Network intrusion detection based on SVM is the hot topic of network security research, and the existing researches have low detection rate, high false positive rate and other issues. Optimizing particle swarm optimization parameters of SVM is an effective solution, but the PSO algorithm is easy to fall into local optimum and results premature convergence.We propose an improved particle swarm optimization algorithm ICPSO, which use chaos operator ergodicity, randomness, sensitivity to initial conditions and other characteristics and the ICPSO is used to make the chaos into the inertia weight factor parameters and The chaos is applied to the optimization of the RBF kernel function parameter g and the penalty factor C, and to improve the convergence speed and precision of the particle swarm optimization. The experimental results show that: relative to the PSO-SVM algorithm and GA-SVM algorithm, ICPSO-SVM improves the efficiency of intrusion detection, and is an effective intrusion detection model.","PeriodicalId":217448,"journal":{"name":"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)","volume":"1140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Distributed Computing in Sensor Systems (DCOSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCOSS.2016.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Network intrusion detection based on SVM is the hot topic of network security research, and the existing researches have low detection rate, high false positive rate and other issues. Optimizing particle swarm optimization parameters of SVM is an effective solution, but the PSO algorithm is easy to fall into local optimum and results premature convergence.We propose an improved particle swarm optimization algorithm ICPSO, which use chaos operator ergodicity, randomness, sensitivity to initial conditions and other characteristics and the ICPSO is used to make the chaos into the inertia weight factor parameters and The chaos is applied to the optimization of the RBF kernel function parameter g and the penalty factor C, and to improve the convergence speed and precision of the particle swarm optimization. The experimental results show that: relative to the PSO-SVM algorithm and GA-SVM algorithm, ICPSO-SVM improves the efficiency of intrusion detection, and is an effective intrusion detection model.
网络入侵检测系统中支持向量机参数的优化方法
基于支持向量机的网络入侵检测是网络安全研究的热点,现有研究存在检测率低、误报率高等问题。优化支持向量机的粒子群优化参数是一种有效的解决方案,但粒子群优化算法容易陷入局部最优,导致过早收敛。提出了一种改进的粒子群优化算法ICPSO,利用混沌算子遍历性、随机性、对初始条件的敏感性等特点,利用ICPSO将混沌转化为惯性权重因子参数,并将混沌应用于RBF核函数参数g和惩罚因子C的优化,提高了粒子群优化的收敛速度和精度。实验结果表明:相对于PSO-SVM算法和GA-SVM算法,ICPSO-SVM算法提高了入侵检测的效率,是一种有效的入侵检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信