Parameter Reduction in Actuarial Triangle Models

G. Venter, Roman Gutkovich, Qian Gao
{"title":"Parameter Reduction in Actuarial Triangle Models","authors":"G. Venter, Roman Gutkovich, Qian Gao","doi":"10.2139/ssrn.2992300","DOIUrl":null,"url":null,"abstract":"Very similar modeling is done for actuarial models in loss reserving and mortality projection. Both start with incomplete data rectangles, traditionally called triangles, and model by year of origin, year of observation, and lag from origin to observation. Actuaries using these models almost always use some form of parameter reduction as there are too many parameters to fit reliably, but usually this is an ad hoc exercise. Here we try two formal statistical approaches to parameter reduction, random effects and Lasso, and discuss methods of comparing goodness of fit.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"278 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2992300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Very similar modeling is done for actuarial models in loss reserving and mortality projection. Both start with incomplete data rectangles, traditionally called triangles, and model by year of origin, year of observation, and lag from origin to observation. Actuaries using these models almost always use some form of parameter reduction as there are too many parameters to fit reliably, but usually this is an ad hoc exercise. Here we try two formal statistical approaches to parameter reduction, random effects and Lasso, and discuss methods of comparing goodness of fit.
精算三角模型的参数约简
精算模型在损失保留和死亡率预测方面也做了非常相似的建模。两者都是从不完整的数据矩形(传统上称为三角形)开始,并按起源年份、观察年份和从起源到观察的滞后进行建模。使用这些模型的精算师几乎总是使用某种形式的参数缩减,因为有太多的参数无法可靠地拟合,但通常这是一个特别的练习。本文尝试了两种正式的统计方法进行参数约简,随机效应和Lasso,并讨论了比较拟合优度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信