Multi-projective Parameter Estimation for Sets of Homogeneous Matrices

W. Chojnacki, R. Hill, A. Hengel, M. Brooks
{"title":"Multi-projective Parameter Estimation for Sets of Homogeneous Matrices","authors":"W. Chojnacki, R. Hill, A. Hengel, M. Brooks","doi":"10.1109/DICTA.2009.27","DOIUrl":null,"url":null,"abstract":"A number of problems in computer vision require the estimation of a set of matrices, each of which is defined only up to an individual scale factor and represents the parameters of a separate model, under the assumption that the models are intrinsically interconnected. One example of such a set is a family of fundamental matrices sharing an infinite homography. Here an approach is presented to estimating a general set of interdependent matrices defined to within separate scales. The input data is assumed to consist of individually estimated matrices for particular models, which when considered collectively may fail to satisfy the constraints representing the inter-model relationships. Two cost functions are proposed for upgrading, via optimisation, the data of this sort to a collection of matrices satisfying the inter- model constraints. One of these functions incorporates error covariances. Each function is invariant to any change of scale for the input estimates. The proposed approach is applied to the particular problem of estimating a set of fundamental matrices of the form of the example set above. Experimental results are given which demonstrate the effectiveness of the approach.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A number of problems in computer vision require the estimation of a set of matrices, each of which is defined only up to an individual scale factor and represents the parameters of a separate model, under the assumption that the models are intrinsically interconnected. One example of such a set is a family of fundamental matrices sharing an infinite homography. Here an approach is presented to estimating a general set of interdependent matrices defined to within separate scales. The input data is assumed to consist of individually estimated matrices for particular models, which when considered collectively may fail to satisfy the constraints representing the inter-model relationships. Two cost functions are proposed for upgrading, via optimisation, the data of this sort to a collection of matrices satisfying the inter- model constraints. One of these functions incorporates error covariances. Each function is invariant to any change of scale for the input estimates. The proposed approach is applied to the particular problem of estimating a set of fundamental matrices of the form of the example set above. Experimental results are given which demonstrate the effectiveness of the approach.
齐次矩阵集的多投影参数估计
计算机视觉中的许多问题需要对一组矩阵进行估计,每个矩阵只定义一个单独的比例因子,并表示一个单独模型的参数,假设这些模型本质上是相互关联的。这种集合的一个例子是一组基本矩阵共享一个无限单应。这里提出了一种方法来估计在单独尺度内定义的相互依赖矩阵的一般集合。假设输入数据由特定模型的单独估计的矩阵组成,当将它们放在一起考虑时,可能无法满足表示模型间关系的约束。提出了两个代价函数,通过优化将这类数据升级为满足模型间约束的矩阵集合。其中一个函数包含误差协方差。每个函数对输入估计的任何尺度变化都是不变的。所提出的方法被应用于估计上述示例集形式的一组基本矩阵的特殊问题。实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信