Fatigue driving detection with modified ada-boost and fuzzy algorithm

Zhang Yong, Li Jianyang, Liu Hui, Gao Xuehui
{"title":"Fatigue driving detection with modified ada-boost and fuzzy algorithm","authors":"Zhang Yong, Li Jianyang, Liu Hui, Gao Xuehui","doi":"10.1109/CCDC.2018.8408177","DOIUrl":null,"url":null,"abstract":"Facial features is the most important and obvious characteristics for the fatigue driving detection. This paper uses the modified Ada-Boost algorithm to detect face and to locate eyes and mouth precisely. The adaptive threshold is used to extract the characteristics of the eyes and mouth status. At last, fuzzy algorithm is used to judge the fatigue status which combined with PERCLOS rules. Experiments show that the proposed method has stronger robustness, faster speed, more accurate precision and meet the real-time demand.","PeriodicalId":409960,"journal":{"name":"2018 Chinese Control And Decision Conference (CCDC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Chinese Control And Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2018.8408177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Facial features is the most important and obvious characteristics for the fatigue driving detection. This paper uses the modified Ada-Boost algorithm to detect face and to locate eyes and mouth precisely. The adaptive threshold is used to extract the characteristics of the eyes and mouth status. At last, fuzzy algorithm is used to judge the fatigue status which combined with PERCLOS rules. Experiments show that the proposed method has stronger robustness, faster speed, more accurate precision and meet the real-time demand.
基于改进ada-boost和模糊算法的疲劳驾驶检测
面部特征是疲劳驾驶检测中最重要、最明显的特征。本文采用改进的Ada-Boost算法对人脸进行检测,对眼睛和嘴巴进行精确定位。采用自适应阈值提取眼睛和嘴巴的状态特征。最后,结合PERCLOS规则,采用模糊算法对疲劳状态进行判断。实验表明,该方法鲁棒性强,速度快,精度高,满足实时性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信