Estimating the structure of social networks from incomplete sets of observed information by using compressed sensing

Shun Sugimoto, M. Aida
{"title":"Estimating the structure of social networks from incomplete sets of observed information by using compressed sensing","authors":"Shun Sugimoto, M. Aida","doi":"10.1109/LATINCOM.2017.8240162","DOIUrl":null,"url":null,"abstract":"For complex large scale networks, like social networks, it is typically impossible to observe complete information about their topology structure or link weight directly. A recent proposal, the network resonance method, can estimate the eigenvalues and eigenvectors of the Laplacian matrix for representing network structure, by using the resonance phenomena of oscillation dynamics on networks. However, it is generally not possible to observe all the eigenvalues and eigenvectors. In practice, the observed values must be assumed to include some non-negligible errors. This paper uses compressed sensing to create a new method of reconstructing the original Laplacian matrix from some of its eigenvalues and eigenvectors. Since almost all node pairs in social networks have no link, we can expect that compressed sensing will be effective. The estimated Laplacian matrix of a social network enables to us to know its structure and link weights.","PeriodicalId":190644,"journal":{"name":"2017 IEEE 9th Latin-American Conference on Communications (LATINCOM)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 9th Latin-American Conference on Communications (LATINCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATINCOM.2017.8240162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For complex large scale networks, like social networks, it is typically impossible to observe complete information about their topology structure or link weight directly. A recent proposal, the network resonance method, can estimate the eigenvalues and eigenvectors of the Laplacian matrix for representing network structure, by using the resonance phenomena of oscillation dynamics on networks. However, it is generally not possible to observe all the eigenvalues and eigenvectors. In practice, the observed values must be assumed to include some non-negligible errors. This paper uses compressed sensing to create a new method of reconstructing the original Laplacian matrix from some of its eigenvalues and eigenvectors. Since almost all node pairs in social networks have no link, we can expect that compressed sensing will be effective. The estimated Laplacian matrix of a social network enables to us to know its structure and link weights.
利用压缩感知从不完全观测信息集估计社会网络结构
对于复杂的大型网络,如社交网络,通常不可能直接观察到其拓扑结构或链路权重的完整信息。最近提出的网络共振方法,利用网络上振荡动力学的共振现象,可以估计表征网络结构的拉普拉斯矩阵的特征值和特征向量。然而,通常不可能观察到所有的特征值和特征向量。在实践中,必须假定观测值包含一些不可忽略的误差。本文利用压缩感知技术,提出了一种由拉普拉斯矩阵的一些特征值和特征向量重构原始拉普拉斯矩阵的新方法。由于社交网络中几乎所有的节点对都没有链路,我们可以预期压缩感知是有效的。通过估计一个社会网络的拉普拉斯矩阵,我们可以知道它的结构和链接权值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信