Real Time Detection of Social Bots on Twitter Using Machine Learning and Apache Kafka

Eiman Alothali, Hany Alashwal, Motamen Salih, Kadhim Hayawi
{"title":"Real Time Detection of Social Bots on Twitter Using Machine Learning and Apache Kafka","authors":"Eiman Alothali, Hany Alashwal, Motamen Salih, Kadhim Hayawi","doi":"10.1109/CSNet52717.2021.9614282","DOIUrl":null,"url":null,"abstract":"Social media networks, like Facebook and Twitter, are increasingly becoming important part of most people's lives. Twitter provides a useful platform for sharing contents, ideas, opinions, and promoting products and election campaigns. Due to the increased popularity, it became vulnerable to malicious attacks caused by social bots. Social bots are automated accounts created for different purposes. They are involved in spreading rumors and false information, cyberbullying, spamming, and manipulating the ecosystem of social network. Most of the social bots detection methods rely on the utilization of offline data for both training and testing. In this paper, we use Apache Kafka, a big data analytics tool to stream data from Twitter API in real time. We use profile information (metadata) as features. A machine learning technique is applied to predict the type of the incoming data (human or bot). In addition, the paper presents technical details of how to configure these different tools.","PeriodicalId":360654,"journal":{"name":"2021 5th Cyber Security in Networking Conference (CSNet)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Cyber Security in Networking Conference (CSNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNet52717.2021.9614282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social media networks, like Facebook and Twitter, are increasingly becoming important part of most people's lives. Twitter provides a useful platform for sharing contents, ideas, opinions, and promoting products and election campaigns. Due to the increased popularity, it became vulnerable to malicious attacks caused by social bots. Social bots are automated accounts created for different purposes. They are involved in spreading rumors and false information, cyberbullying, spamming, and manipulating the ecosystem of social network. Most of the social bots detection methods rely on the utilization of offline data for both training and testing. In this paper, we use Apache Kafka, a big data analytics tool to stream data from Twitter API in real time. We use profile information (metadata) as features. A machine learning technique is applied to predict the type of the incoming data (human or bot). In addition, the paper presents technical details of how to configure these different tools.
使用机器学习和Apache Kafka实时检测Twitter上的社交机器人
Facebook和Twitter等社交媒体网络正日益成为大多数人生活中重要的一部分。Twitter为分享内容、想法、观点、推广产品和竞选活动提供了一个有用的平台。由于越来越受欢迎,它变得容易受到社交机器人的恶意攻击。社交机器人是为不同目的创建的自动账户。他们散布谣言和虚假信息,网络欺凌,垃圾邮件,操纵社交网络生态系统。大多数社交机器人的检测方法都依赖于对离线数据的利用来进行训练和测试。在本文中,我们使用Apache Kafka,一个大数据分析工具来实时地从Twitter API流数据。我们使用概要信息(元数据)作为特征。应用机器学习技术来预测输入数据的类型(人或机器人)。此外,本文还介绍了如何配置这些不同工具的技术细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信