P. Orlowski, J. Noble, Y. Ventikos, J. Byrne, P. Summers
{"title":"Image-based simulation of brain arteriovenous malformation hemodynamics","authors":"P. Orlowski, J. Noble, Y. Ventikos, J. Byrne, P. Summers","doi":"10.1109/ISBI.2008.4541086","DOIUrl":null,"url":null,"abstract":"A novel image-based patient-specific simulation method has been developed incorporating computational fluid dynamics (CFD) and porous media principles which presents, for the first time, patient-specific blood flow through an arteriovenous malformation of the brain (BAVM). The new approach constructs an image-based geometric model of a malformation where the BAVM nidus is modelled as a porous medium. The method has been applied to a brain BAVM case with two feeding and four draining vessels. A qualitative comparison of the simulation results with blood flow imaging data shows the promise of the approach and suggests that the method may find application in planning for BAVM treatment.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A novel image-based patient-specific simulation method has been developed incorporating computational fluid dynamics (CFD) and porous media principles which presents, for the first time, patient-specific blood flow through an arteriovenous malformation of the brain (BAVM). The new approach constructs an image-based geometric model of a malformation where the BAVM nidus is modelled as a porous medium. The method has been applied to a brain BAVM case with two feeding and four draining vessels. A qualitative comparison of the simulation results with blood flow imaging data shows the promise of the approach and suggests that the method may find application in planning for BAVM treatment.