How to select optimal control parameters for genetic algorithms

Qi-Wen Yang, Jing-ping Jiang, Guo Chen
{"title":"How to select optimal control parameters for genetic algorithms","authors":"Qi-Wen Yang, Jing-ping Jiang, Guo Chen","doi":"10.1109/ISIE.2000.930482","DOIUrl":null,"url":null,"abstract":"In order to enhance the optimization efficiency, it's important for genetic algorithms (GAs) to select optimal control parameters. But the theory behind parameter setting for a GA gives little guidance for their selection. We have being selected the control parameters for GAs only by trials so far. In this paper, we discuss the function of genetic operators and present the conception of natality of schema (NS). We put forward an approach to estimating the optimal ranges of the control parameters for GAs by utilizing the NS. The approach is proven effectively by a genetic algorithm based on Boolean operators (GABO) which is proposed in this paper.","PeriodicalId":298625,"journal":{"name":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2000.930482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to enhance the optimization efficiency, it's important for genetic algorithms (GAs) to select optimal control parameters. But the theory behind parameter setting for a GA gives little guidance for their selection. We have being selected the control parameters for GAs only by trials so far. In this paper, we discuss the function of genetic operators and present the conception of natality of schema (NS). We put forward an approach to estimating the optimal ranges of the control parameters for GAs by utilizing the NS. The approach is proven effectively by a genetic algorithm based on Boolean operators (GABO) which is proposed in this paper.
如何选择遗传算法的最优控制参数
为了提高遗传算法的优化效率,选择最优控制参数是遗传算法的一个重要问题。但是遗传算法参数设置背后的理论对它们的选择几乎没有指导作用。到目前为止,我们只通过试验选择了GAs的控制参数。本文讨论了遗传算子的功能,并给出了模式(NS)的属性概念。提出了一种利用神经网络估计气体控制参数最优范围的方法。本文提出的基于布尔算子的遗传算法(GABO)证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信