Regression Model of Autonomous Lateral Rectification with Driver Perception

Liang Qiao, H. Bao, Zuxing Xuan, Qing Yang
{"title":"Regression Model of Autonomous Lateral Rectification with Driver Perception","authors":"Liang Qiao, H. Bao, Zuxing Xuan, Qing Yang","doi":"10.1109/CIS.2017.00096","DOIUrl":null,"url":null,"abstract":"It is usually hard for autonomous vehicle to perform human-likely in lateral rectification between desired path and ego-vehicle, since those methods choose linear preview point according to speed. This paper presents a regression model of autonomous lateral rectification with driver perception to describe relationship between preview point and speed. It is shown in Driver Perception Model(DPM) that logarithmic relationship between speed and preview point distance. Experimental results show that compared with lateral rectification of Stanley method, regression model of autonomous lateral rectification with driver perception can 1) acquire lower lateral acceleration, which enhances comfort; 2) promote robustness of algorithm on parameter tuning.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is usually hard for autonomous vehicle to perform human-likely in lateral rectification between desired path and ego-vehicle, since those methods choose linear preview point according to speed. This paper presents a regression model of autonomous lateral rectification with driver perception to describe relationship between preview point and speed. It is shown in Driver Perception Model(DPM) that logarithmic relationship between speed and preview point distance. Experimental results show that compared with lateral rectification of Stanley method, regression model of autonomous lateral rectification with driver perception can 1) acquire lower lateral acceleration, which enhances comfort; 2) promote robustness of algorithm on parameter tuning.
考虑驾驶员感知的自主横向纠偏回归模型
由于自动驾驶车辆根据速度选择线性预览点,通常难以在期望路径和自我车辆之间进行像人一样的横向校正。本文提出了一种具有驾驶员感知的自动横向纠偏回归模型,用于描述预览点与速度之间的关系。在驾驶员感知模型(Driver Perception Model, DPM)中,车速与预览点距离呈对数关系。实验结果表明,与Stanley方法的横向纠偏相比,考虑驾驶员感知的自主横向纠偏回归模型可以获得更低的横向加速度,提高了车辆的舒适性;2)提高算法对参数整定的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信