Bo Jin, Jungsik Kim, Daegun Kang, M. Meyyappan, Jeong-Soo Lee
{"title":"Size-dependent characteristics of highly-scalable In2Se3 nanowire phase-change random access memory","authors":"Bo Jin, Jungsik Kim, Daegun Kang, M. Meyyappan, Jeong-Soo Lee","doi":"10.1109/NANO.2013.6721030","DOIUrl":null,"url":null,"abstract":"Electrical phase transition characteristics of self-assembled In2Se3 nanowire-based phase-change random access memory are presented. Through repeatable phase switching behavior in In2Se3 nanowire, we explored critical device parameters, such as set/reset programming voltage, extremely high resistance ratio (~107), power consumption, thermal resistance by Fourier's law, resistance drift coefficient by power law, etc. Size-dependent properties were observed: a systematic reduction in set/reset voltage and programming power, increase in thermal resistance of amorphous/crystalline phases and decrease in resistance drift coefficient at reset state, all scaling down the nanowire diameter. Such investigations provide an opportunity to develop highly-scalable and thermally efficient nonvolatile memory architecture in the future.","PeriodicalId":189707,"journal":{"name":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","volume":"77 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 13th IEEE International Conference on Nanotechnology (IEEE-NANO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2013.6721030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Electrical phase transition characteristics of self-assembled In2Se3 nanowire-based phase-change random access memory are presented. Through repeatable phase switching behavior in In2Se3 nanowire, we explored critical device parameters, such as set/reset programming voltage, extremely high resistance ratio (~107), power consumption, thermal resistance by Fourier's law, resistance drift coefficient by power law, etc. Size-dependent properties were observed: a systematic reduction in set/reset voltage and programming power, increase in thermal resistance of amorphous/crystalline phases and decrease in resistance drift coefficient at reset state, all scaling down the nanowire diameter. Such investigations provide an opportunity to develop highly-scalable and thermally efficient nonvolatile memory architecture in the future.