Cross-Domain Academic Paper Recommendation by Semantic Linkage Approach Using Text Analysis and Recurrent Neural Networks

K. Ravi, Junichiro Mori, I. Sakata
{"title":"Cross-Domain Academic Paper Recommendation by Semantic Linkage Approach Using Text Analysis and Recurrent Neural Networks","authors":"K. Ravi, Junichiro Mori, I. Sakata","doi":"10.23919/PICMET.2017.8125417","DOIUrl":null,"url":null,"abstract":"In this digital age, free-flow and exchange of knowledge and information are of paramount importance. This is the prime reason why we decided to tackle cross-domain linkage. Firstly, we build a system which recommends scholarly academic papers based on the content of news article a user is reading using text analysis techniques. We perform a human expert evaluation to test the system for relevance. Our judges show good agreement with a kappa value of 0.869. To improve the quality of recommendations further, we use an RNN-LSTM model trained on Wikipedia to measure document relevance. We reorder a list of academic papers based on their semantic similarity with the input document using our RNN-LSTM model. Our model achieves a slightly better performance than one of the best document embedding techniques doc2vec (paragraph vector). To the best of our knowledge, ours is the first study linking the domains of News Media and Academic landscape, and bridging the knowledge-gap.","PeriodicalId":438177,"journal":{"name":"2017 Portland International Conference on Management of Engineering and Technology (PICMET)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Portland International Conference on Management of Engineering and Technology (PICMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PICMET.2017.8125417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this digital age, free-flow and exchange of knowledge and information are of paramount importance. This is the prime reason why we decided to tackle cross-domain linkage. Firstly, we build a system which recommends scholarly academic papers based on the content of news article a user is reading using text analysis techniques. We perform a human expert evaluation to test the system for relevance. Our judges show good agreement with a kappa value of 0.869. To improve the quality of recommendations further, we use an RNN-LSTM model trained on Wikipedia to measure document relevance. We reorder a list of academic papers based on their semantic similarity with the input document using our RNN-LSTM model. Our model achieves a slightly better performance than one of the best document embedding techniques doc2vec (paragraph vector). To the best of our knowledge, ours is the first study linking the domains of News Media and Academic landscape, and bridging the knowledge-gap.
基于文本分析和循环神经网络的语义链接方法的跨领域学术论文推荐
在这个数字时代,知识和信息的自由流动和交流至关重要。这就是我们决定解决跨域链接的主要原因。首先,我们利用文本分析技术构建了一个基于用户正在阅读的新闻文章内容的学术论文推荐系统。我们执行人类专家评估来测试系统的相关性。我们的判断结果吻合良好,kappa值为0.869。为了进一步提高推荐的质量,我们使用在维基百科上训练的RNN-LSTM模型来衡量文档相关性。我们使用我们的RNN-LSTM模型,根据与输入文档的语义相似性对学术论文列表进行重新排序。我们的模型实现了比最好的文档嵌入技术之一doc2vec(段落向量)稍好的性能。据我们所知,我们的研究是第一个将新闻媒体和学术领域联系起来的研究,并弥合了知识差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信